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1. Introduction

Immersed tunnels (sometimes called immersed tubes) have been used since the 1910s to connect
opposing banks of rivers or large canals. The main aspect of this type of tunnel is that the tunnel
segments are built in a dry dock, then transported by river to the tunnel site, where they are sunk into
place. In the Netherlands, it is the most frequently used tunnel type, but immersed tunnels are also
used in for example the United States, Hong Kong, Australia and the United Kingdom.

There are different ways of constructing an immersed tunnel, the choice of which will depend on local
factors. Most American immersed tunnels are round in shape, consisting of a composite steel and
reinforced concrete ring, whereas most European immersed tunnels are rectangular in shape, made
only of thick reinforced concrete. This thesis will focus on the European type of immersed tunnel.

Like all road constructions, tunnels are prone to accidents that include fire, a particular problem being
leaking oil from vehicles. This can cause a rise in temperature of about 1000 ºC in only a few
minutes, which may last for several hours. Obviously, this will have a detrimental effect on the tunnel
construction, but exactly how detrimental is difficult to determine.

In the Netherlands, the need for fire safety engineering with regards to concrete tunnels was first
understood in 1978, after the fire in the Velsertunnel. A year later, Rijkswaterstaat (an executive
agency of the Dutch Ministry of Transportation and Water Management) published its Rijkswaterstaat
curve, describing the temperature-time relation of a fire in a tunnel with oil leaking out of a truck. Its
accompanying design method was based on preventing the concrete to reach higher temperatures than
380 ºC by applying fire-resistant plates (in addition to general fire-safety aspects such as providing
emergency exits, but these non-construction aspects are not discussed here).

After a fire, structural damage is usually assessed primarily by visual observation. Concrete exposed
to temperatures of roughly 300 ºC and higher will turn pink, and since this roughly corresponds to the
onset of the main strength loss, the rule of thumb is to look for any pink concrete, remove this by
force, and replace it with new concrete (shotcrete). Although in principle valid, this practice ignores
the structural damage that may have been done to the rest of the tunnel.

It was not until 2000 that Rijkswaterstaat commissioned a further study into the repairability of
immersed tunnels after fire, resulting in (TNO, 2004). This study looked into the possibility of
permanent damage to the construction in terms of deformations and cracks, which may cause leakage
and thereby lead to corrosion of the reinforcement. The report concluded that although deformations
may be negligibly small and cracks will not form on the heated side of the tunnel, it is possible that
cracks will develop on the unheated side of the tunnel, due to thermal incompatibility over the
thickness of the wall.

However, the finite element simulation that was used in the TNO study was not detailed enough on this
point to definitely confirm or deny this possibility, nor could be predicted whether such cracks, if they
would appear, would close during cooling-down or grow further. The notion of cracks developing on
the unheated side is, however, an important one, because it can be neither seen nor repaired when
assessing damage from the inside of the tunnel. It is possible that tunnels are deemed to be repaired
after a fire, while in fact a crack remains open on the unheated side, causing slow corrosion of the
reinforcement.
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In recent years, however, the focus fire safety engineering has moved in a different direction.
Explosive spalling has become a major problem, with concrete mixtures becoming more and more
high-grade. When concrete is heated, moisture or water vapour will expand  more than the
surrounding concrete, and escape through the pores. However, when the permeability is small (as is
typically the case in high-grade concretes), the water vapour cannot escape and internal pressure will
build. This will eventually lead to an explosive spalling of pieces of the concrete on the heated side.

The solution to this problem is usually found in the application of polypropylene (PP) fibres, which
are then mixed through the concrete. These fibres will melt at 160 ºC, creating voids and channels
through which water vapour can escape, which alleviates the internal pressure. A lot of recent research
into fire safety has concerned itself with the problems of explosive spalling and the working of PP
fibres, and a growing number of people seem to think of PP fibres as an alternative to fire-resistant
plates.

This has only increased the necessity of further research into the problem of cracking on the unheated
side, because unlike fire-resistant plates, the application of PP fibres does not reduce the temperatures
in the concrete, which means that the concrete can easily reach temperatures well in excess of 1000
ºC. This also means that the thermal incompatibility between the heated side of a tunnel wall, and the
unheated side of the wall, will become much larger, which could cause far larger cracks on the
unheated side.

Therefore, this master's thesis will take a more in-depth look at the problem of cracking on the
unheated side. The aim of this study is to determine whether this phenomenon is an actual risk, and if
so, what parameters influence it. A finite element model of a tunnel cross section has been built in
DIANA which calculates the differences in thermal expansion, and the degradation of concrete
properties with higher temperatures. In chapter 2, the material model behind this simulation will be
described, as well as some general aspects of the finite element method and meshing aspects.

In the following chapter, attempts to further 'zoom in' on a crack to assess its size and depth using the
lattice model will be described, as well as the problems regarding the implementation of the lattice
model in DIANA. Chapter 4 will concern a number of fire tests that have been performed at Efectis.
These tests concern tunnel elements that have been built on a scale 1:10 (i.e. roughly two meters wide
and roughly 75 cm high), that have been subjected to a fire.

The crack patterns were then observed and, where possible, crack sizes assessed. Both tunnels with
fire-resistant plates and tunnels with PP fibres have been tested (as well as unprotected tunnels for
reference). The chapter will describe both the test setup as well as a comparison with the results from
the finite element simulation. In chapter 5 a sensitivity analysis will be performed, and in the
concluding chapter the main results drawn from this research will be summarised, its implications
discussed, and recommendations for further research and programming will be given.
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2. The finite element simulation

2.1 Nature of the problem

The phenomenon of cracking on the unheated side is supposedly caused by thermal incompatibility
over the thickness of the tunnel wall (or roof). Like most materials, concrete expands upon heating
(until it reaches temperatures over 700 ºC, when the shrinkage of the cement becomes so large that no
net expansion takes place anymore). However, since the thermal conductivity of concrete is very low
(and tunnel walls are relatively thick), the heated side of a tunnel wall can easily reach temperatures
well in excess of 700 ºC, while the unheated side can still be 20 or 30 ºC.

This thermal gradient over the thickness causes a huge difference in thermal expansion, which can
only be accommodated by the bending of the walls and roof (inwards, so that the heated side can
elongate more than the unheated side). This, however, presents a problem for the corners of the
structure, which cannot possibly accommodate the inward bending of both walls and roof. The
hypothesis is therefore that cracks will develop here in case of a fire.

In order to check whether this is actually the case, and if so, to what extent, and which parameters
influence this, a numerical simulation seems the most likely method. In particular, a finite element
simulation can be used to model the temperature flow in the cross-section and the resulting strains and
stresses. The program DIANA has been chosen for this purpose. In a so-called staggered analysis it
performs two consecutive finite element simulations, the first being a heat flow analysis to calculate
the temperature field, the second being a structural analysis to calculate the stresses and strains.

Because the focus of this master's thesis is on the phenomenon of cracking on the unheated side
during a fire in an immersed tunnel, the material model will be optimised for that purpose, and
disregard a number of aspects that pertain to (heated) concrete in general, but are inessential to the
problem at hand. In particular, this model will disregard:

� time-dependent effects, such as creep, because the fire only has a limited duration, and such
effects are presupposed to be negligible on this time scale

� (explosive) spalling on the heated side (a topic extensively discussed in other publications,
that has little bearing on the cracking on the unheated side)

� moisture transport and pore pressure (this is the driving force behind explosive spalling, but
since that effect is not considered here, it would be needlessly complicated to include a
moisture transport model in the FEM simulation. At the same time, moisture content and
transport does have an influence on the material properties and the resulting stresses, but this
is implicitly taken into account

� the cooling down phase of a fire. This aspect is beyond the scope of this master's thesis, but
nevertheless, the simulation will be set up in such a way that this aspect can easily be added at
a later stage. This means that considerations regarding cooling down phase will still dictate a
number of aspects of the model, a topic that will be more extensively discussed in section
2.4.2.4.

In the next section, some general concepts of the finite element method will be described first, before
the aspect of meshing is discussed. It is, however, not possible to give a comprehensive description of
the theory behind the finite element method in this report; interested readers are referred to literature
such as (Zienkiewicz & Taylor, 1989; 1991) or (Bathe, 1996), as well as to the DIANA manual (TNO
DIANA, 2007).
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2.2 General aspects of the finite element method

The finite element method (FEM) is a numerical method for finding solutions to (a system of)
differential equations, by discretisation of these equations using so-called shape functions. For linear
elastic problems the system of equations can be described as:

K �u=�f

Here, K is the system stiffness matrix, �u is a vector containing the unknown nodal degrees of
freedom (displacements and/or rotations) and �f is the vector of nodal forces that correspond with
the respective degrees of freedom. 

The structure (a line, plane or volume) to be analysed is divided into small elements with a finite
length (whence the name), bounded by nodes. For each node i, a shape function Ni exists that is equal
to unity at that node, and equal to zero at all others. For a one-dimensional bar, the approximated
displacement field can then be expressed as:

uh=�
i=1

n

Ni�ai

Here, ai is the nodal degree of freedom under consideration, which in this case would be the
displacement in the x-direction. In the more general case, this can be formulated as:

uh=N �ue

The derivative of this function is the strain field. If B is a matrix that contains the derivatives of the
shape functions, this can be expressed as:

��=B �ue

The relation between stresses and strains can in general be written as:

��=D���� ��0	
 ��0

Here D represents some stress-strain relation, for example the Young's modulus in Hooke's law. The
element nodal displacement vector �ue (expressed on the local coordinate system of the element) can
be related to the system degrees of freedom (in the global coordinate system), by invoking an element
transformation matrix, which shall be denoted Te.

�ue=T e�u

For each element, the local equilibrium equation is:

K e �ue
�f e=�r e
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The subscript e here denotes 'element', so Ke signifies the element stiffness matrix, as opposed to K,
the system stiffness matrix. The extra vector �r signifies the internal forces (i.e. those between the
elements), which are of course not present in the global formulation. The element stiffness matrix is
calculated from:

K e=�
V e

BT DBdV

Or rather, if the transformation from a global to the local coordinate system is taken into account:

K e=T T ��Ve

BT DBdV 	T
The right-hand vector �f e is calculated from (with the vector �ge being the body force per unit
area):

�f e=�
Ve

NT �gedV��
Ve

BT D ��0dV
�
Ve

BT ��0dV

The main function of a finite element program is now to assemble the element stiffness matrices into
a large system stiffness matrix, and to assemble the global right-hand vector from the element right-
hand vectors, so that only the displacements are unknown. In an entirely linear system, the solution
can be calculated from inverting the global equation:

�u=K�1�f

However, in a non-linear system, this is not possible, because the matrix K is dependent the current
displacement field (i.e. the strain history). In that case, an incremental-iterative solution is needed,
which means that problems are not only discrete in space (the finite elements), but also in time (time
steps). When incrementing a time step, the finite element program calculates the new external load
�f ext . The difference between the external load and the internal load, i.e. the summation of the

nodal loads from the previous step, is called the 'out-of-balance force', and denoted by the letter �g .

�g=�f ext��f int

Note that all these 'loads' are vectors, because there are components for the different directions (e.g. x
and y). From the out-of-balance force, the displacement field is estimated:

� �ui=K i
�1 �gi

The subscript i here denotes 'iteration', because these variables can change per iteration. The resulting
internal force can then be calculated from:

�f int , updated=K �utotal

After which a new out-of-balance force can be calculated:

�gupdated=�f ext��f int ,updated
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If the out-of-balance force is smaller than a certain limit �gmax , the solution is deemed correct and
the simulation can proceed with the next time step. If not, the finite element program will calculate a
new iteration by calculating a new displacement field, calculate the resulting internal force, and
compare that updated value with the external force, etcetera, until the out-of-balance force has
become small enough.

Because �g is a vector, DIANA actually computes the (Euclidean) norm, and compares it with the
norm of the initial out-of-balance force, so that the required accuracy is automatically scaled for the
step size. This is convenient, because it means the user can simply give a constant as the required
accuracy ratio, without having to estimate the order of magnitude of the values in �f first.

r f=

�g i


�g0


�r f ,max

This is called a 'force norm'. An alternative to this is the 'displacement norm', which does not compare
the out-of-balance forces but the resulting displacements � �ui , or the 'energy norm', which takes
into account both the forces and the displacements (the 'energy' being the area under the curve).

r d=

� �ui


� �u0


�r d ,max

r e=����ui
T ��f int ,i
1
�f int , i 	

��u0
T ��f int ,1
�f int ,0	 ��

The different norm items; image reproduced from the DIANA manual (TNO DIANA, 2007)

The choice of convergence norm is usually determined by the boundary conditions. In systems where
displacements are fixed, the force norm should be used, because this is the critical parameter (whereas
the displacement norm would not be too interesting). On the other hand, when a structure can expand
freely, the stresses will not be very high, so the force norm is less useful, and displacements should be
taken as the critical parameter.
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This presents a problem for the analysis at hand, because the external boundary conditions do not play
a major role, but the interplay between the displacements (thermal expansion of the concrete) and
stresses (restrictions from neighbouring elements) is the critical factor. Therefore, it would not be
right to focus on only displacements or stresses, which is the energy norm has been used for all
simulations in this thesis.

As a side note, it is also possible to use both the force norm and the displacement norm, but
experience shows that this leads to a larger number of required iterations, because the simulation
cannot optimise a single function. Also note that both the displacement norm and the energy norm
require an extra iteration, because the displacements � �ui=K i

�1 �gi have to be calculated from the
final out-of-balance force, which makes the simulation somewhat slower.

An aspect that has not yet been discussed is which values to take for Ki. The relation between �u and
�f is typically non-linear (else discretisation in time would not be needed), so the exact value of K

is dependent on �u . This poses no problem for the relation �f int , updated=K �u , but for estimating the
displacement field, � �ui=K i

�1 �gi , there are several options.

The first and simplest option is the linear stiffness method, where the stiffness matrix is only
evaluated once, at the start of the first step, and kept constant throughout the entire simulation. This
gives estimations of the displacement field that are typically inaccurate, which often leads to a very
large number of iterations before the calculation reaches convergence.

The second, more advanced option is Newton-Raphson, which takes the tangential stiffness as K for
every iteration. This means that convergence is reached is only a few iterations, but each iteration
requires more computation time, because the stiffness matrix has to be calculated again for every
iteration. DIANA also supplies some in between options, such as modified Newton-Raphson, which
calculates the stiffness matrix once per time step, but keeps it constant over all iterations.

A comparison of the linear stiffness method (left) aand the Newton-Raphson method (right)
Both images are reproduced from the DIANA manual (TNO DIANA, 2007)

In the analyses in this thesis both Newton-Raphson and the linear stiffness model have been used.
Especially after the user-supplied material model became more advanced, it took DIANA a lot of time
to calculate the stiffness matrix each iteration, so that the linear stiffness method became significantly
faster than the Newton-Raphson method, even if it needed 200 to 300 iterations per time step. It is
also more robust, since it is not as sensitive to the smoothness of the �f - �u relation as Newton-
Raphson is (which easily fails if the derivative is not continuous).
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The linear stiffness method gets into trouble, however, when the tangential stiffness matrix changes
sign, i.e. the �f - �u relation becomes negative, as would happen during softening in plasticity,
where deformations (and therefore displacements) may increase while the external load decreases. In
that case the linear stiffness method only gives good convergence if the the ascending slope is
significantly steeper than the descending slope, because it the method cannot take smaller steps. If the
descending slope is steeper than the ascending, the linear stiffness method can never find a solution. 

The Newton-Raphson method should have no problem with descending slopes in general, but is very
sensitive to spurious kinetic modes during the softening phase, as demonstrated by Rots (1988). Also,
this iteration mechanism will fail on the transition between ascent and descent if this is not smooth
enough, because then the derivatives will not point toward the correct solution. In practice, this will
therefore mean that the Newton-Raphson method will in a number of cases also fail at the onset of a
descending slope.

Another factor to be reckoned with is that the initial estimation of the displacement field should be
close enough to correct solution, especially if the �f - �u relation is irregularly shaped (which is
most likely the case when plasticity is involved). Because the initial estimation is calculated from the
internal force vector of the previous step, this means that no major changes in the system between two
time steps may occur. For the first step DIANA estimates the force vector using a simple linear-elastic
calculation, which is the reason why it is always necessary to supply some 'dummy-values' such as a
Young's modulus, even when these parameters are taken care of by user-supplied subroutines.

Obviously, the initial estimation will be too far off if the step size is too large, but this can be
somewhat mitigated by invoking a line search mechanism. This method scales the estimated
displacement increment by a factor � , and minimises the energy potential � in the line search
direction.

s=��
��

=��
�u

�u
��

=0

Because the line search method is only used to 'guide' the global iteration method (Newton-Raphson
or linear stiffness) to the proper region on the �f - �u curve, the method can be stopped if s is
sufficiently close to zero, typically defined as:

s�� s0

Where s0 is the initial derivative of the energy potential before the line search method is applied, and
� is a constant during the entire simulation. Invoking a line search method aids convergence, but it

cannot overcome local extrema, and the simulation will still fail if the initial estimation is too far off.
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A graphical representation of the line search technique. Image reproduced from the DIANA manual
(TNO DIANA, 2007)

Therefore, it can be summarised that in order for the calculation to converge, there are two
requirements to  the �f - �u relation:

1. There should be continuity of the �f - �u curve during a time step, with preferably also the
derivative function continuous.

2. There should be continuity of the �f - �u curve between the time steps, i.e. the position of
the curve may not change.

The second point is compensated by the fact that the �f - �u curve is only evaluated as discrete
intervals in time (i.e. the time steps), which means that small changes in the position of the curve are
possible. As long as the initial assumption is reasonably close to the actual solution, calculations can
continue on the new curve as normal. This is fortunate, because otherwise the temperature
dependence of material properties could not have been programmed. Still, continuity within a time
step is important, as the solution-finding mechanism (linear stiffness or Newton-Raphson) is
dependent on this.

For the thermal analysis roughly the same procedures apply, although with a different main equation:
K �
C ��=Q

In this equation, K represents the conduction matrix, C is the capacity matrix and Q represents the
external flux. The equations are solved using the Newton-Raphson method, with the aid of a line
search.
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2.3 Meshing aspects

For a structure to be analysed in a finite elements analysis, it needs to be meshed, i.e. subdivided into
elements, which involves a number of important decisions. The first, which has actually already been
implicitly taken in the previous chapter, is the dimensionality of the model. It is technically possible
to analyse a three-dimensional structure in FEM, although it would of course involve longer
computation times and a more difficult pre- and post-processing.

The real question, however, is how useful a third dimension would be. Granted, any tunnel fire has a
finite length in all three dimensions, and the two-dimensional effect of bending inwards will happen
in the third dimension (the length of the tunnel as well). However, in this direction there are no
corners impede rotation, but the bending can be accommodated gradually. Therefore the problem of
cracking on the unheated side will always be far larger in the width-direction of the tunnel, than in its
length-direction of the tunnel.

If the simulation can therefore show that no cracking occurs in the cross section, it can safely be
assumed that no cracking will occur over the length either, so a two-dimensional analysis should be
sufficient. However, if the simulation shows that the cracking is a problem, taking measures against
longitudinal cracks is not necessarily sufficient, because there might still be (smaller) perpendicular
cracks.

The next important decision is the shape of the elements, which can be either quadrilateral or
triangular. To avoid the mesh shape producing a bias for a specific crack shape, triangular elements,
randomly distributed using a Delaunay algorithm, have been chosen (see Rots, 1988). This way, all
local axes are oriented differently, and all elements are of (slightly) different sizes. From a three-
dimensional perspective, plane strain elements would seem to be the logical choice, because there will
be no deformations in the third dimension, but stresses will develop. However, after experiencing
stability problems with these elements, the choice was made to switch to plane stress elements.
Because of the simplifications made in the material model (see section 2.4.2.3), this makes no
difference to the end result.

Because the thermal expansion of concrete depends non-linearly on the temperature, the elements in
the structural analysis should be of a higher order than those in the thermal analysis. DIANA allows for
this in the form of a so-called staggered analysis, which automatically reduces the order of the
element for the thermal analysis, and then continues the structural analysis with the full-order element
type. For triangular element plane stress elements this pair is called T3HT and CT12M, a three-node
and a six-node triangle respectively.

The three-node T3HT uses the following polynomial for the temperature (referred to as potential in
DIANA):

�=a0
a1�
a2�

This polynomial yields a temperature distribution which varies
linearly in both directions, and a flux which is constant over the
element. Therefore, three integration points are required. Note
however that not the temperature field, but only the temperature
values in the nodes are used as input for the structural model.

A T3HT element. Image from 
the DIANA manual (TNO DIANA, 2007)
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The six-node CT12M uses the following polynomial for the displacements:

ui=a0
a1�
a2�
a3��
a4�
2
a5�

2

This polynomial yields displacements that vary quadratically in both
directions, and therefore a linear strain distribution. Three-point
Gauss integration is used to calculate this strain field.

The stress and strain vectors are:

�=[ �xx�yy�xy
] �=[�xx

�yy

�xy
]

A CT12M element. Image taken from
the DIANA manual (TNO DIANA, 2007)

For the reinforcement special 'embedded reinforcement'-elements have been used, which are defined
as lines in the pre-processing. DIANA then calculates which (CT12M) the reinforcements intersect, the
so-called mother elements, and adds the reinforcement properties to the properties of the mother
element. An embedded reinforcement element has no degrees of freedom of its own, instead the
displacements are calculated from the strain field in the mother element. The reinforcement lines
(bars) are subdivided into elements to match the element distribution of the CT12M's.

The stress and strain vectors are:
�=[� �x �x ] �=[� �x �x]

Both can vary linearly over the element length ( �x here representing the local bar axis), so two-
point Gauss integration is needed for the calculation. The resulting forces are added to the nodal
forces of the mother element, and only there taken into account. The downside of this element type is
that it automatically assumes a perfect bond between the reinforcement and the mother element;
slipping is not facilitated. The mother elements are not reduced in area or weight on account of the
reinforcement, and, conversely, reinforcement elements have no weight. The embedded
reinforcements are ignored in the thermal analysis, because their area is negligibly small compared to
the concrete area, so that the reinforcement will hardly influence heat flow.

The last type of element used is a boundary element (B2HT) for the thermal analysis. It is a two-node
line element, applied on the concrete edge. Its division into elements is set to match the T3HT
element distribution. Its temperature polynomial is:
�=a0
a1�

This means the heat flux over the element (which, by definition, is the flux perpendicular to the
element axis, because it is a boundary) can vary linearly along this boundary, so two-point Gauss
integration is used. The primary purpose of these boundary elements to is to calculate the concrete
surface temperature from the air temperatures in the tunnel. These air temperatures are time
dependent, and supplied using a table in an external file.
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The resulting mesh, with the fire assumed to be in the right hand side tube. The solid lines adjacent to
the surfaces represent the embedded reinforcements.

In the picture below the resulting mesh is shown. There is one tube where the fire breaks out (on this
and all other pictures in this report, the fire-loaded tube is to be understood to be the one on the right
hand side), and an unaffected tube. The large temperature gradient that is to be expected will of course
not have a constant slope over the wall thickness. Instead, the gradient will be very high near the fire,
and then gently become lower to approach zero near the unheated side of the wall. Because the T3HT
elements only support a linear temperature field, the element distribution needs to be sufficiently
dense in order to accurately model this phenomenon.

However, it would take far too much computation time to continue this dense distribution throughout
the cross section. On the unheated side, the temperature gradient does not vary that much, and larger
elements can be used. Around the unaffected tube, temperatures hardly rise, and elements here can be
larger still. Hence the skewed element distribution that can be seen in the picture.

Note that even with a very dense mesh, the linear approximation of the temperature curve will still
cause temperatures to temporarily drop below the initial value of 20 °C. This temperature dip occurs
on the unheated side of the major temperature peak, and because the peak itself reaches temperatures
in excess of 1000 °C, values of the dip of about -100 °C should not be seen as extreme. In the material
model all temperatures below 20 °C are treated as being 20 °C, so the influence on the structural
analysis is marginal.

In an actual tunnel the number of tubes may vary depending on its purpose: there may be separate
tubes for pedestrians and/or cyclists, for trams or for trains, and in a road tunnel there is typically an
emergency tube as well (which is smaller and located in the middle). Yet it is unlikely that the number
of unaffected tubes has any influence on the behaviour of the fire-loaded tube, so one unaffected tube
should be sufficient for the purpose of this simulation.
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2.4 Material model

2.4.1 Thermal analysis

The main equations of the heat flow in the thermal analysis are:
q=�k��
qv=cv ��

Here, q represents the heat flux, � represents the temperature, k is the conductivity and cv is the
capacitance, i.e. the volumetric specific heat of the concrete. The latter is calculated from:
cv=cp�

With cp designating the specific heat of concrete and � representing the density. Both factors
change with temperature, and the resulting cv-T curve is shown below, based on the values in
Eurocode 2, part 1-2 (CEN, 2004). The curve has a peak between 100 and 115 °C, representing the
evaporation of free water. For this purpose, a moisture content of 3% by weight has been assumed,
although it is doubtful whether all water would actually evaporate: it could move to a colder region of
the concrete instead, although it is difficult to predict how this would influence the curve.

The change in specific heat (dash-dotted line), density (dotted line) and the resulting volumetric
specific heat (continuous line) with temperature

The thermal conductivity k is also dependent on the temperature. The Eurocode provides both an
upper limit and a lower limit, and for this material model, the exact middle of the two has arbitrarily
been chosen. The curve is displayed on the next page.
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The change of thermal conductivity (continuous line) with temperature, presumed to be the exact
mean of the upper and lower limits specified in the Eurocode (dashed lines).

For the boundary elements, a distinction has to be made between convection and radiation. The
convective discharge is calculated from:
qc=�k c��surface��external	

The radiative discharge is calculated from:
qr=��r���surface

4 ��external
4 	

Here, kc is the convection factor, taken to be a constant of 25 W/(m2K), �r is the emission
coefficient, taken to be a constant of 0.7 (dimensionless), and � is the Stefan-Boltzmann constant,
which is equal to 5.67×10-8 W/(m2K4). The values for the convection factor and the emission
coefficient are both taken from the Eurocode.

For the external temperatures, the
Rijkswaterstaat curve is used, which
reaches temperatures of 1350 ºC and
lasts for two hours. A visual
representation of the curve is given
next to this text.
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2.4.2 Structural analysis

2.4.2.1 General

DIANA offers several pre-supplied material models, which are in itself often quite advanced, but they
give erroneous results when applied in broader context than intended. For example, Anderberg &
Thelandersson's (1976) formula for the load induced thermal strain is correctly modelled in DIANA as:

��lits=� k
�
f c
�T

Here, �lits represents the load induced thermal strain (LITS), � is the normal thermal expansion, k
is a factor (assumed to be equal to 2), � is the stress, fc the strength and T the temperature. Because
the stress is negative in compression, this formula gives negative strains for rising temperatures. This
is in itself correct, but DIANA also applies the same formula when the material is in tension (producing
positive strains) or when the temperature is decreasing (also producing positive strains), neither of
which is realistic. This also means that the entire effect becomes reversible, which makes modelling
the cooling-down phase not very interesting.

One of the most frustrating aspects of DIANA is the impossibility to change the workings of such
formulae. Because some elements will still be warming up during the cooling-down phase, it is not
possible to turn the effect off after a certain number of steps. Nor does DIANA offer any possibility to
make the parameter k dependent on � or �T , which also could have solved the problem.

The only option which gives complete freedom is the user-supplied material model (USRMAT), which
has the strain vector as input and needs the stress vector as output. The user can construct any relation
between the two at will, but at the same time, this means having to build an entire material model
from scratch, which, especially for two-dimensional plasticity, is not easy.

Therefore, the focus will be on the essentials in this material model, structuring it in such a way that it
can easily be expanded by other people at a later stage. The descriptions in this section will be limited
to mathematical formulations and textual elaborations; for those familiar with the Fortran
programming language, the actual USRMAT code can be found in appendix A.

For the yield line, a simple Rankine criterion will be assumed for both tension and compression,
which means that the two principal directions are independent of each other. As mentioned in chapter
2.3, the strain and stress vectors are of the shape:

��=[ �xx�yy�xy
] ��=[�xx

� yy

� xy
]
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These need to be converted to principal directions:

��princ=[�1�2]=[12 ��yy
�xx
r 	1
2
��yy
�xx�r 	] ��=[� xx

� yy

� xy
]=[

1
2 �� 1
� 2	�

1
2 ��1��2	cos ��	

1
2 �� 1
� 2	


1
2 ��1��2	cos ��	

1
2 ��1��2	sin��	 ]

with r=���yy��xx	2
�xy
2 and �=arcsin� �xy

r 	
From the above formulae it follows that �1 is the largest of the two principal values, and �2 is the
smallest. Because compression strains are negative, however, under compression �2 is the largest
value and �1 the smallest. The strains can be decomposed according to the following equation:

��=��thermal
��mechanical

2.4.2.2 Thermal strains

The thermal component of the strain, ��thermal , consists of the thermal expansion and the load
induced thermal strain. The normal thermal expansion is calculated according to the Eurocode (for
siliceous aggregates):

�=9�10�6
0.77�10�11T2 for T�700°C
�=0 for T�700°C

These are actually the derivatives of the formulae
given in the Eurocode, because those formulae
give the total thermal strain compared to the
reference length at 20 °C. The load induced
thermal strain (LITS), sometimes misleadingly
called transient creep, is the effect that a concrete
which is under a compressive load during heating
undergoes a smaller expansion than what would be
expected (according to the above formulae). For
larger loads, the result may be a net shrinkage.

This effect was extensively described by
Anderberg & Thelandersson (1976), who proposed
the following formula, which was already briefly
mentioned at the start of this chapter:

��lits=� k
�
f c
�T

Image reproduced from
(Anderberg & Thelandersson, 1976)
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The problem when applying this formula, however, is that most experiments on this topic (see for
example also Fischer (1967) and Khoury et al. (1985; 1986)), have been performed on either heating
a pre-loaded concrete, or loading a pre-heated concrete: there seems to be no data for LITS caused by
compressive stresses that are, in turn, caused by thermal expansion, which is what is happening on the
heated side of the tunnel wall. It is only during heating will large compressive stresses develop here
(because the deformations are restricted) and therefore not a true pre-loading, yet the compressive
stresses from lower temperatures is already there before the temperature rises further.

Therefore, it seems a reasonable assumption to calculate the change in LITS at every time step based
on its current stress level (although note that 'current' here implies the stress level that was calculated
the previous step, because the stress vector of the current time step has not yet been calculated). This
incremental formulation, however, necessitates the storage of the accumulated thermal strain each
step. Because the direction of the principal stresses may change during the process, this means that
thermal strains can only be calculated for the global directions, and not for the principal directions.

This in itself would not be a problem, if the formula mentioned above would be valid for every
direction. Unfortunately, this formula only describes the behaviour in the direction of principal
compression, the stress in the other direction assumed to be zero. Experiments by Ehm (1985),
however, show that the unloaded directions develop positive strains in the range of 0.5 to 0.75 times
the (negative) strain in the loaded direction. Because the normal thermal expansion still has to be
added to these values, the total strain in the unloaded axis can an expansion that is two times as large
as the contraction in the loaded axis.

Ehm has also derived a different graphs for the situation where the stress in the secondary axis is not
equal to zero, but set to 40% of �2 or equal to �2 , which show quite different strain situations
altogether. Unfortunately it is not possible to work these graphs into the material model, because:

1. The three graphs provide too little information to create a full curve, given that the strain
situation is clearly non-linear with respect to �1 , �2 and T.

2. The graphs define a multi-axial strain situation dependent on a multi-axial stress situation (and
temperature), whereas USRMAT requires the calculation of a multi-axial stress state based on a
multi-axial strain state and temperature (i.e. the other way round). It is quite possible that the
combination of the multi-axial strain state and temperature given as input do not fit the graphs
for any stress state.

3. As mentioned before, the accumulated strains need to be stored, which can not be done for the
principal directions, because these the angle of these directions may change during the
simulation.

The third is actually the least of the problems, because it could be worked around with a few
assumptions (either assume that the change in direction of the principal axes is negligibly small, or
use linear interpolation between the two accumulated strains of the previous step to calculate the
accumulated strain for any new angle), but that is futile as long as the first two problems remain.

Therefore the material model calculates the the thermal strains in the global directions; the
mechanical strains (see next section) are then obtained by subtracting these thermal strains from the
total strains.

�thermal , i=�accumulated
� �T �1
k �i

f c 	 if � i�0 and �T�0

�thermal , i=�accumulated
� �T if � i 0 or �T�0
(with i representing the directions xx and yy; for �xy thermal strains do not apply)
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An unrelated problem that has not been addressed yet is the validity for higher temperatures.
Anderberg & Thelandersson have only measured up to 800 ºC, and Khoury and Fischer up to 600 ºC.
Ehm has heated his specimens up to failure, which in the best case occurred at roughly 800 ºC; his
load-controlled tests at constant temperature go up to 750 ºC. Note that fc represents the strength at 20
ºC, so on increasing temperatures failure might be reached when the nominal load level is still, for
example, 0.5.

Above 700 ºC, the shrinkage of the cement becomes so large that the net thermal expansion �
becomes roughly zero. At higher temperatures this may also be attributable to the decomposition of
the CSH phases (see Schneider, 1982) . If the strain due to LITS is made linearly dependent on � ,
this means that LITS will also stop above 700 ºC. The graphs by Ehm, however, show that the LITS
will start to deviate from this linear relation at roughly 600 ºC, and there is no sign of diminishment
between 700 and 800 ºC.

A more practical approach to this problem lies in the realisation that high (nominal) stress levels
simply cannot be attained at high temperatures, and would lead to local failure (spalling, which is
explicitly not considered in this simulation). Nevertheless, since the strains on the heated side are the
driving mechanism behind the studied phenomenon of cracking on the unheated side, misestimation
could have an influence on the result (although the thickness of the concrete zone that is exposed to
temperatures over 700 ºC is relatively small, and might be too small to change the outcome).

2.4.2.3 Mechanical strains

When the thermal strains are known, the remaining mechanical strains can be computed from:

��mechanical=�����thermal

This vector ��mechanical is then converted into the principal directions as described in section 2.4.2.1,
after which �1 and �2 can both be independently subjected to the same stress-strain relation
(because no interaction was assumed between the directions). The elastic part of the compressive
domain is modelled as a parabola, following the formulation of Anderberg & Thelandersson (1976):

� i=f max ,c
�i

�max ,c �2� � i
�max , c 	

Here, i represents the indices 1 and 2, f max , c is the maximum compressive strength, and �max , c is
the strain at maximum stress (and therefore not the the maximum strain, because there is also
softening). For the tensile domain a completely linear behaviour will be assumed:
� i=E �i

Because the tensile part and the compressive part should be connected smoothly, the value of the
Young's modulus should be equal to the derivative of the compressive parabola at �i=0 ; hence:

E=2
f max , c
�max , c

For softening under compression, a simple linear relation will be assumed. To ensure a smooth
connection, the elastic parabola is followed past its peak at �max , c to a certain point designated
�sof , c , beyond which the softening starts. The stress at that point is equal to fsof,c. 
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� i=Esof ��i��sof ,c	
f sof , c

with �sof=�max , c�1�Esof

E 	 and f sof=f max ,c �1�Esof
2

E2 	
The softening stiffness Esof can essentially be arbitrarily chosen, but it is convenient to express it in
terms of the fracture energy Gc, scaled for the element length Lel (which, for the triangular elements as
described in section 2.3, is taken be equal to the diameter of its circumscribed circle).

E sof=
�f sof , c

�ult , c��sof ,c

with �ult ,c=2
Gc

f sof ,cLel

�sof ,c

�ult ,c signifies the point where the stress-strain curve reaches zero, and beyond which the stress will
remain zero. To avoid the need for iteration (because �sof , c and f sof , c are calculated from Esof, see
above), �sof , c and f sof , c have been interchanged with �ult ,c and f ult ,c respectively. Because
these values are typically very close together, this will not have a notable influence on the derivative.

E sof=
�f max , c

�ult ,c��max , c

�ult ,c=2
Gc

f max, cLel

�max ,c

For softening in tension, a non-linear relation according to Hordijk (1991) has been used:
�i

� sof ,t
=[1
�c1 wwc 	

3]e�c2
w
w c� w

wc
�1
c1

3 	e�c2

Here, c1, c2 and wc are model parameters, for which Hordijk advises the values:
c1=3 c2=6.93 wc=160!m

In the Hordijk formula, w designates the crack width, but since this model presupposes smeared
cracking (that is, the cracks are 'smeared out' over several adjacent elements), in this case w should be
seen as a fictitious crack width. These cracks are assumed to rotate with the principal directions
(rotating crack model), which means that the angle of the crack does not need be stored. The fictitious
crack width relates to the strain as:
w=��i��sof ,t	Lel

The Hordijk curve starts at a point designated �sof , t , at which point the stress equals � sof , t .
These values have to be related to the ascending branch of the tensile domain. As explained in section
2.2, the stress-strain relation needs to be sufficiently smooth to ensure convergence, which cannot be
achieved by simply joining a linear elastic branch and a Hordijk curve (which starts with a relatively
steep descent) together. Therefore, a small parabola to join the two branches has been added.
Theoretically this will increase the fracture energy of an element, but because the area below the
parabola is very small compared to the softening branch, this influence is negligible.
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The ascending branch will end a point designated � lin , at which point the stress equals:
�lin=E �lin

The parabola should fulfil three requirements:
1. It should start at �lin , at which point its derivative should be equal to E.
2. Its maximum value should be equal to �max ,t (the strain at which point shall be labelled

�max ,t )
3. It should end at �sof , t , at which point its derivative should be equal to the initial derivative

of the Hordijk curve.

The derivative of the Hordijk curve at �i=�sof , t , or w=0 , is equal to:

Ehor=�sof ,t
Lel
wc

[�c2��1
c1
3	 ]e�c2

As with Esof, it is desirable to interchange � sof , t with �max ,t , to avoid having to iterate.

Ehor=�max , t
Lel
wc

[�c2��1
c13 	]e�c2

The resulting parabola is given by:

�i=�max , t
[ �E2

4pt�max ,t ] ��i��max ,t 	
2

with pt being the relative height of the parabola:

pt=
�max ,t�� lin
�max ,t

It is now a matter of choice which of these parameters one wants to make external. To ease
comparison with literature when including the temperature dependence �max ,t and pt have been
chosen (in addition to the Hordijk parameters c1, c2 and wc), which gives for the internal parameters:
� lin=�1�pt 	�max ,t

�lin=
� lin

E

� sof , t=�max ,t�pt�max ,t
Ehor

2

E2

�sof , t=�max ,t�2pt�max ,t
Ehor

E2

�max , t=�lin
2pt
�max ,t

E

The point at which the Hordijk curve reaches zero is w=wc . Hordijk points out that wc (the critical
crack width) is merely a fitting parameter, and should not be seen as a real value for the actual crack
width at which no more stresses can be transmitted (which is likely to be much higher). Nevertheless,
it is impractical to take any other approach here than to declare the stresses zero beyond this point.
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In terms of strain this point will be designated �ult ,t , with the formula:

�ult ,t=�sof , t

wc

Lel

The stress-strain curve used in the material model, with inset of a closeup of the linear elastic tensile
domain, showing the continuity between the compressive and the tensile branch, as well as the
parabola that joins the linear elastic curve and the Hordijk curve.

The full stress-strain curve is depicted above. For your convenience, below is an overview of the
different equations and the regions within which they are used (note that �i�0 for the compression
domain).

�i=0 �i��ult , c
�i=Esof ��i��sof ,c	
f sof , c �ult ,c��i��sof ,c

�i=f max ,c
�i

�max ,c �2� �i
�max , c 	 �sof , c��i�0

�i=E �i 0��i��lin

�i=�max ,t
[ �E2

4 pt�max ,t ] ��i��max ,t 	
2

�lin��i��sof , t

�i=� sof ,t [[1
�c1 wwc 	
3]e�c2

w
w c� w

wc
�1
c13 	e�c2]

with w=��i��sof ,t	Lel

�sof , t��i��ult ,t

�i=0 �ult ,t��i
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For the regions marked here as �i=0 , in fact a very slight descent was programmed with a slope of
1×10-12  N/mm2, because DIANA has immense problems with convergence on completely horizontal
sections, especially when Newton-Raphson is used as iterative method (because it uses the derivative
to calculate its estimations; see section 2.2).

The external parameters are then:
�max , c �max ,c �max , t pt Gc c1 c2 wc

The first four parameters relate to the peak stresses in both compression and tension, and completely
define the ascending branches. The last four parameters define the descending slopes. It might appear
more logical to take �max , t instead of pt as the fourth parameter, but that would be highly
inconvenient, because the top of the parabola should join smoothly to the ascending branch, which is
governed by E (an internal parameter calculated from �max , c and �max ,c ).

The parabola needs to be sufficiently small compared to the linear elastic branch, which means that
there should be certain limitation to �max , t compared to E, which is very difficult to estimate,
especially when temperature influence is accounted for. Overestimating �max , t would lead to an
extremely large parabola (and hardly a linear branch), but underestimating would make the system of
equations unsolvable (because �lin would become larger than �max , t ). Therefore, it is preferable to
keep pt a fixed value, for example 0.9, so that �max ,t automatically scales with E, which scales with
�max , c and �max ,c .

The mentioned external parameters can now be made dependent on temperature and on the (nominal)
load level, i.e. the ratio between current (compressive) stress and the maximum (compressive)
strength at 20 ºC. The concept of load level does not apply to tensile stresses. Because the stress
vector of the current step has not been calculated yet, the 'current' stress' is actually the stress vector
that was output the previous step. This is then calculated into principal stresses using the angle of the
current step size, because this is the angle for which the stress level needs to be calculated. The
resulting load level is then:

�i , k=
�� i , k�1
�max , c ,ref

for �i ,k�1�0

�i , k=0 for �i ,k�1 0

Here, i represents the principal directions 1 and 2, k is the step number, and ref indicates that the
reference value (i.e. at 20 ºC) should be taken here.

For the calculation of �max , c a formulation developed by Fellinger (2004) based on experiments by
Schneider (1982; 1988) has been used:

�max , c=�1e
�3[2.2
 T

140
��

0.3T
100 ]
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Schneider concludes that although aggregate type influences the general shape of the stress-strain
relation, the strain at peak stress is nearly independent of it. The same can be said for the type of
cement, as well as for the original strength (i.e. at 20 ºC) and water/cement ratio (within the range of
'practical application'). Therefore, it seems safe to 'hard-code' this formula into the material model
(making it, strictly speaking, another internal parameter), as opposed to other aspects such as the
thermal expansion, which are redirected to a table in DIANA's data file, where material properties can
be input per simulation.

The relationship between temperature and strain at peak (compressive) stress for various load levels.

The formula mentioned on the previous page was based on experiments that reached temperatures up
to 700  ºC, and for load levels up to 0.3, so application of the formula outside that range is
problematic. As with the load induced thermal strain (see section 2.4.1), data for high temperatures is
lacking, yet it is important to correctly estimate the strain development on the heated side (because it
is the driving mechanism behind the cracking on the unheated side). It would be best if more research
were carried out in this area, but that is beyond the scope of this master's thesis.

Extrapolating the curve to all temperatures is probably the most justifiable solution given the limited
data available. Extrapolating the load level, however, is more difficult, because assessing the load
level in the first place is problematic. In the above equation, the load level was set equal to the stress
level of the previous step, but for a curve at room temperature, the stress level is per definition equal
to unity at peak stress. In the quoted experiments, the load level is the stress level during heating, after
which the concrete is unloaded, and then re-loaded until failure.
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In the intended simulation, however, the temperature increases during the loading, which makes a
clear distinction between load level and stress level impossible. During heating, the stress-strain curve
changes with every step, and it is clear that the then-present load also has an influence on this change,
but is is unclear to what extent. Taking the entire stress level as load level is an upper bound
estimation, integration over the temperature domain a lower bound. Since the latter requires extra
assumptions to implement, the former has been chosen. For the unheated side this may be a particular
overestimation, but since the load level has hardly any influence at temperatures below 100 ºC (see
formula), this is not a problem.

The matter of load levels larger than 0.3 (which may still exist in either case) is more difficult. The
curve is fitted on only three different load levels (0, 0.1 and 0.3), which makes extrapolation very
dangerous. It is, in any case, not likely that the observed trend continues beyond 0.3, because this
would lead to extremely small strains at peak stress for high load levels, and in some cases less than
zero. The safest solution is therefore to treat any load level higher than 0.3 as if it were equal to 0.3.
This also compensates somewhat for the possible over-estimation of the load level as mentioned
above. In general, more research is needed in this area.

�max , c, i=�1e
�3[2.2
 T

140
�
�i
0.3T
100 ] for 0��i�0.3

�max , c, i=�1e
�3[2.2
 T

140
�0.30.3T

100 ] for �i�0.3

Here, i denotes the principal directions 1 or 2. Note that internal parameters derived from �max , c, i ,
such as E, Esof and �max , t , can also differ between the two principal directions because of the above.
Strictly speaking, they should therefore also be marked with an index i, but these subscripts have been
omitted from the formulations earlier in this chapter for clarity. Experiments by Ehm (1985) show that
the strain at peak stress is also mildly influenced by the load level in the perpendicular direction, but it
would be very difficult to implement this (more so because the effect is clearly non-linear, with
�3�i=0.4 giving higher values than either �3�i=0 or �3�i=1 , regardless of temperature).

The second parameter that should be made dependent on temperature is the maximum compressive
stress �max ,c . Schneider (1982) states that original strength has little influence on the strength-
temperature characteristics, so the strength degradation with temperature is best expressed as a
relative factor:

�max ,c=k c�T 	�max ,c ,ref

Schneider also concludes that while the maximum stress under load is somewhat higher than the
unloaded strength, the height of the stress matters very little. Anderberg & Thelandersson (1976) also
concluded that the influence of load level on maximum strength is present but very small compared to
the uncertainties inherent to the estimation of high-temperature strength, and they suggest making
�max ,c a function of temperature only, which is done here.

Graphs by Ehm (1985) show an influence of the stress in the perpendicular direction as well, but this
is an effect that is typically well described by a Drucker-Prager yield criterion (see Kupfer & Gerstle,
1973). Since a simplified Rankine criterion has been chosen, this is not accounted for in the current
material model. Yet, with the idea of later expansion of the model in mind, it would not be right to
introduce an extra parameter for this here, as it is much better described by changing the yield
contour.
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The actual values of kc are rather dependent on the type of cement and aggregate, so these will be
redirected to a table in the data file, rather than coded it into the material model. The standard values,
with which the simulations mentioned in this report have been obtained, were taken from the
Eurocode (CEN, 2004), the values being for siliceous aggregates.

The degradation of compressive (continuous line) and tensile (dotted line) strength with temperature.

Compared to the compressive strength, only a limited amount of data concerning the tensile strength
is available, and most test results in this area only refer to the residual strength after cooling the
specimens down, in which case a different strengths are obtained. From the little data available,
however, it can be clearly seen that the degradation of strength with temperature is more pronounced
for tension than for compression.

The Eurocode has simplified this into a linear relation that reaches zero at 600 ºC, but a comparison
with experimental results by Thelandersson (1972) show that the steep descent does not continue
beyond 600 ºC, at which point there is still 30 to 40 percent of the strength left. Between 600 and 800
ºC, there is only a mild decrease; data for temperatures over 800 ºC is unfortunately lacking. At the
same time, Thelandersson points out that the split-cylinder test used to (indirectly) determine the
tensile strength seem to overestimate the strength if it has a low magnitude.

The choice of type of aggregate appears to have a large influence, as can be seen from the graphs by
Harada (quoted in Schneider, 1982), therefore it is best to redirect this value to a table in the data file.
Ignoring a possible influence of the original strength, this value will be reduced to a factor kt. In the
simulations the values from Thelandersson's curve (for siliceous aggregates) have been used as
standard values, with extrapolation of the 600 - 800 ºC zone to higher temperatures.

�max ,t=k t�T 	�max ,t , ref
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The next parameter to be considered is the relative height of the parabola pt. Since data on tensile
stress-strain relations at high temperatures is scarce, it is difficult to assess the influence of
temperature on it. Based on the little information available, an particular influence of the temperature
is not too be expected. Because pt is expressed as a ratio, � lin will automatically scale with �max ,t

and �max , t will automatically scale with E when the temperature increases, which is the intended
behaviour. The factor pt can then be made a constant.

The remaining external parameters all concern the softening behaviour. In general, very little is
known about temperature influence on the softening behaviour; some researchers (see for example
Zhang, 2007) have attempted to relate the fracture energy to the temperature, but the results are
conflicting and no clear relations can be indicated. Softening is also very sensitive to the triaxial stress
state, as shown by Jamet et al. (1984), but for biaxiality this effect is probably less pronounced. Given
the convergence problems relating to the softening domain (see section 2.5), it is probably not
worthwhile to spend too much time to model these effects accurately.

Therefore, the four softening parameters will be treated as constants, independent of temperature or
load level. The resulting softening curves, however, will still be dependent on temperature because
they are scaled by �max ,t and �max ,c . The choice of external parameter influences the way in
which this scaling takes place. In compression, the fracture energy is the constant, which means that
the ultimate strain will increase with rising temperature. In tension, on the other hand, the ultimate
strain is a constant, and therefore the fracture energy will decrease with rising temperature. Since
neither can be deemed unrealistic, this should not be considered a problem.

For your convenience, below is an overview of the external parameters that should be input in a DIANA
data file (where material properties are input per simulation).

Constant material properties Temperature dependent material properties

� �max ,c , ref [force/area]
� �max ,t ,ref [force/area]
� c1 [-] (Hordijk parameter)
� c2 [-] (Hordijk parameter)
� wc [length] (Hordijk parameter)
� pt [-] (parabola height)
� Gc [force/area] (compr. fracture

energy)
� k [-] (LITS parameter)

� k c�T 	 [-] 
� k t�T 	 [-]
� ��T 	 [1/temperature]

The table also displays the type of unit per parameter. The actual units (for example, the choice
between meters, millimetres or inches) can be made in the data file itself. Input properties for the
thermal analysis are not shown in this table. Note that DIANA always needs certain 'dummy' values in
its data file (such as the Young's modulus) even if they are not used in the material model. For more
information reference is made to the DIANA manual (TNO DIANA, 2007).

After the stresses have been calculated in the principal directions, they can be converted back to the
global coordinates.
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��=[� xx

� yy

� xy
]=[

1
2 ��1
�2	�

1
2 ��1��2	cos��	

1
2 ��1
�2	


1
2 ��1��2	cos��	

1
2 �� 1��2	sin��	 ]

with �=arcsin� �xy

r 	 and r=���yy��xx	2
�xy
2

DIANA also requires the user-supplied material model to output the tangent stiffness matrix, which
contains the derivatives of the stresses to the strains. This is needed for the iteration mechanism.

E tangent=[
"� xx

"�xx

"�xx

"�yy

"� xx

"�xy

"� yy

"�xx

"�yy

"�yy
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"�xy
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"�xy

"�yy

"� xy

"�xy

]
The required values are obtained using differential calculus, for example:
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"�xx
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=
"�1

" �1

" �1
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�yy��xx
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�xy
2 , it follows that
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����yy�� xx	2
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And because [�1�2]=[12 ��yy
�xx
r 	1
2 ��yy
�xx�r 	] , it follows that:

"�1
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�xy

2  and 
"�1
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The only remaining unknowns are then
"�1

"�1
and

"�2

"�2
. This was only the derivation for

"�xx

"�xx
, but the other eight terms in the tangent stiffness matrix can be expressed in terms of �xx ,

�yy , �xy ,
"�1

"�1
and

"�2

"�2
in the same way. The values for

"�i

"�i
are simply the derivatives

of the stress-strain curve, as summarised in the table below.
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As can be seen in the tangent stiffness matrix, there is no Poisson's ratio in this system. This is not
caused by the decision to use a Rankine yield criterion, because the Poisson's ratio is usually applied
within the linear elastic region, the common formulation being (with # designating the Poisson's
ratio):

� i=
� i

E �#
�3�i

E

This stress-strain relationship does not have a clear distinction between elasticity and plasticity
because there is no internal damage parameter (which would be superfluous for Rankine), but, as
Feenstra (1993) points out, it would be more realistic to apply the Poisson's ratio throughout the
whole stress-strain spectrum anyway. Feenstra also gives pointers on how to do this, but this is
difficult to implement.

The biggest problem with the Poisson's ratio, however, is its dependence on stress level. The Poisson's
ratio is usually thought of as a constant, but even at room temperature this is only valid for stress
levels up to roughly 80% (in the �3�i direction). For stress levels higher than that, the Poisson's
ratio increases to roughly 0.5 at peak stress. As the temperature increases, the stress level at which the
ratio starts to deviate from its initial value decreases: at 150 ºC for example, the deviation already
starts at a stress level of 50%. At 750 ºC, the Poisson's ratio reaches values of 0.9 at stress levels of
less than 20%.

Unfortunately, this effect is non-linear with respect to both temperature and stress level, as can be
observed in the graphs by Ehm (1985), but the information is insufficient to derive a non-linear
relation for the Poisson's ratio. This means that the Poisson's ratio cannot be properly estimated, and
therefore overcoming the technical difficulties regarding its implementation should not be the focus of
this master's thesis. However, it should be noted that the Poisson's ratio is an important factor, and
hopefully this aspect can be added to the material model after further research in a different project.
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2.4.2.4 Unloading and the cooling down phase

The cooling down phase is beyond the scope of this master's thesis, but nonetheless some general
remarks should be made about this phase, because the material model should be coded in a way to
allow for a later addition of this aspect. The warming up phase can be modelled properly without an
unloading curve (because no unloading takes place), but in an actual fire there is also a cooling down
phase. If corrosion of the reinforcement is taken to be the primary consequence (rather than
immediate structural failure), it is important to know whether the cracks will close or widen during
the cooling down phase.

When concrete is unloaded hysteresial effects take place, and the original stress-strain relation is no
longer followed. This effect takes place as soon as the stress-strain curve starts to deviate from its
linear relation (which in compression is almost immediately in the current material model), but of
course most noticeable (and important) in the softening regime. This alternate unloading curve should
then be modelled explicitly in the material model, so that the stresses do not again increase when the
strains are reduced.

The actual unloading curve is highly non-linear and dependent on its point of origin. For unloading in
tension Hordijk (1991) has developed the formula:

� i

�max ,t
=
�eu

�max ,t

 1

3
weu

wc

0.4 [0.014 [ln � wweu 	]

5

�0.57�1� w
weu ]

Here, �eu is the stress that was present when unloading started, and weu is the crack at that point.
Note that this formula produces compressive stresses for values w�0 , which is in accordance with
test results. Unfortunately, it is rather difficult to work temperature dependence into this formula: if
both �eu and weu are stored as damage parameters once the unloading starts, the curve is fixed
throughout the unloading, even if the main stress-strain relation changes drastically (in case of a
temperature increase this might even lead to the unloading curve obtaining higher stresses than the
main stress-strain curve).

One possible solution is to take only weu as the damage parameter, and use the main stress-strain
relation to calculate a new �eu every time step. This would introduce some temperature
dependence, but it is very doubtful whether this would even remotely represent the actual influence.
After all, the history of the unloading curve is not changed by a temperature change, only its current
direction. Note also that �eu only moves the unloading curve vertically, without affecting the shape.
Storing �eu and calculating weu would change the shape (as well as its starting point), but in rather
drastic way. It is probably not realistic, and also doubtful whether continuity between the time steps
could be observed (which is required for convergence - see section 2.2).
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Since there is a lack of data regarding the temperature influence on the softening curve, it is probably
safest to ignore this influence completely by keeping the Hordijk curve fixed. Another possibility is to
take a different curve. An elastic unloading curve takes the Young's modulus and uses that as linear
relationship. This agrees well with the initial slope of the non-linear unloading, and it is easy to
account for the temperature influence, because the Young's modulus already changes with
temperature. As this modifies only the current direction of the unloading curve, and not its history,
this is the most correct approach, but still, without test data, one cannot assess how realistic this is.

In the case of fire in the tunnel it is possible that elements that yielded in tension during heating
develop compressive stresses during cooling. In this case the elastic unloading curve is problematic,
because it deviates significantly from reality, predicting compression at too large crack openings, and
overestimating the compressive stresses that occur at a certain strain level.

Yet another option is a secant unloading curve, which simply connects the start point of unloading
with the origin. This is the least realistic, but the simplest to apply because it can easily be connected
to compression part of the main stress-strain curve. Because of the continuity requirements (see
section 2.2), it is always necessary to define a full stress-strain relation, especially if the linear
stiffness model is used, whose initial estimations may be severely off. The full curve should then
properly 'lead' the iteration mechanism to the correct region. For elastic unloading this can be done by
extending the curve to infinite compression, but for the Hordijk curve, this is not possible.

For unloading in compression, no clear mathematical formulation such as the Hordijk formula seems
to exist, the general choice being between elastic unloading and secant unloading, or some linear
relation in between. Since it is probable that elements that have yielded in compression will not only
develop tensile stresses during cooling, but also yield in tension, it is important to attach the existing
tension curve of the main stress-strain relation to the unloading curve. This is done most easily when
using secant unloading, although horizontally moving the tension curve to match the point where the
unloading curve reaches zero strain is also an option.

It should also be realised that when an element starts to yield, neighbouring elements (which were still
in the ascending branches of their stress-strain relations) will briefly unload, before reloading again.
Then when the next element starts to yield, the neighbouring elements will unload again, before
subsequently reloading. This essentially elastic process may repeat itself a number of times, both in
compression and in tension. If the unloading curve is modelled to start as soon as the stress-strain
relation deviates from a straight line (which is realistic), the reloading branch should also be
modelled.

Since this pertains only to small unloadings, the reloading curve can be taken to be equal to the
unloading curve (in reality reloading curves have a different shape, see Hordijk (1991), but for small
values this will not have an influence). The curve should then smoothly reconnect to the main stress-
strain curve, which at constant temperature should be no problem. Temperature changes however,
might cause the peak stress to move (both horizontally and vertically) between two steps, which may
lead to the reloading curve connecting at a different point, possibly past the peak. This will still create
a new peak of course (at the point of connection), but this peak may be too pointed to allow proper
convergence. 

The above problem can be avoided, however, by assuming the whole pre-peak behaviour to be linear,
and only applying unloading to the actual softening. In that case, the reloading curve needs not be
programmed, because 'true' reloading will not occur during the fire (at least not with the same sign).
The unloading curve can then just be extended towards infinity in the reloading direction, to help
convergence (which will only be aided by not having an extra peak).
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A bigger problem that will occur if unloading is to be modelled, is that a damage parameter can only
be stored for the principal directions (and whichever unloading curve is chosen, at least the fact that
unloading is taking place should be stored). However, in the cracks that will emerge on the unheated
side, the strain in the direction parallel to the surface will unload while the shear strain remains
constant (the strain perpendicular to the surface being close or equal to zero). This means that the
principal directions will rotate because of the unloading, and eventually swap. Therefore, it is not
possible to describe an unloading process using a damage parameter bound to a principal direction.

As a side note, in reality the shear stress in a crack would decrease during crack opening (because
cracks cannot transmit shear stresses), which would also cause the shear strains to decrease (and the
shear force would be transmitted by a smaller remaining cross section). If the crack subsequently
closes, the shear strains and stresses would increase again. This effect is currently not implemented in
the model, but if it had been, the principal directions would still rotate because of the unloading (only
a decrease of the shear strain could prevent this).

Besides unloading, there are a number of different hysteresial effects that need to be considered to
properly simulate the cooling down phase. In the material model thermal expansion and material
degradation was described as dependent on temperature, but this is only valid for the warming up
phase; for cooling down these effects cannot simply be assumed to be fully reversible.

Fischer (1967) has performed extensive measurements on concrete during heating and cooling. His
graphs show that (for siliceous concretes) the thermal contraction is somewhat less than its
corresponding thermal expansion, especially for the lower temperatures, resulting in a remaining
positive strain after the temperature has returned to its initial value. There may be a time effect
involved here as well, since the graphs also show an ongoing thermal expansion when the temperature
is kept constant. The cooling down curve may be different if such a period of constant temperature is
not present in between, or when the cooling is done more rapidly than in Fischer's tests.

At the same time, there seems to be no influence of the load level at all: the thermal contraction
appears to be a constant regardless of the amount of load induced thermal strain that was built up
during heating. This means for high load levels that contraction will take place during heating and
during cooling, resulting in very large compressive strains. It is vital that this is modelled correctly in
the material model, if the cooling down phase is to be simulated.

Interestingly, Ba�ant et al. (2004) conclude that load induced thermal strain does apply to the cooling
down phase, but with an opposite sign (i.e. it is an additional contraction, not an expansion to counter
the thermal contraction), which is clearly incompliant with the graphs by Fischer. However, in a
different publication, Ba�ant and Chern (1987) equate the transitional thermal creep to the normal
drying creep, coupling the creep on cooling to the increase of the moisture content. This suggests that
the observed difference in conclusion might be caused by the different time scales observed: the
moisture content might not have increased again during the cooling phase in Fischer's tests.

While it seems reasonable to presume a fixed moisture content decrease with increasing temperatures,
this is not so easy for the cooling down phase, as the moisture has migrated through the cross section.
Clearly, it would be easiest to assume no influence of the moisture level and follow Fischer's graphs,
yet it would be more correct to at least assess the time scale of the return of the moisture content
compared to the time scale of cooling down after a fire. Only if the time scale of the moisture content
is clearly larger than the duration of the cooling, can this effect be safely ignored.
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No data appears to exist for cooling from temperatures above 600 ºC. Since above these temperatures
concrete deteriorates quickly, it is doubtful whether the thermal contraction would be the same if even
higher temperatures have been reached. It is possible that the thermal strains would then become
completely irreversible, but on the other hand the deterioration might also be (partly) reversible; it is
likely that the rate of cooling plays a dominant role here.

With regards to the stress-strain relation it should be noted that multiple researchers, such as Malhotra
(1956), Fischer (1967) and Khoury (1986), have observed that the compressive strength after cooling
is lower than the compressive strength at high temperatures. In the graphs by Fischer, the difference is
more pronounced if higher temperatures have been reached, with as much as 25% of the high
temperature strength being lost during cooling. Malhotra, on the other hand, finds a more or less
constant loss of 20% regardless of the temperature reached. Khoury concludes that the strength
reduction is less when the concrete is under compressive load during cooling, something that can also
be seen in Fischer's graphs.

Fischer has also derived stress-strain relations for concretes after cooling, although he has only
measured up to a limited strain level. From these graphs it would appear that, for lower temperatures,
the strain at peak stress is reduced on cooling (implying some reversibility), but the same cannot be
said for higher temperatures, where the strain appears to be either constant or, possibly, to increase.
Further (strain rate controlled) measurements would be required to analyse this phenomenon more
accurately.

From results by Thelandersson (1972) it can be determined that the tensile strength also decreases
during the cooling down phase if temperatures over roughly 350 ºC have been reached, but that some
reversibility exists if the temperature has remained below that level. Both effects are, however, very
small compared to the major strength loss under compression.

The hysteresial effects of the cooling down phase could be modelled by introducing an additional
parameter Tmax, which would represent the highest temperature reached by an element. If the initial
dip below 20 ºC is ignored (which it should be), any element will have only one warming up phase
and one subsequent cooling down phase. Throughout the warming up phase, the material properties
and thermal strains could be calculated as in section 2.4.2.3; in the cooling down phase, on the other
hand, the material properties and thermal strains can be calculated from a combination of T and Tmax.
The primary difficulty that remains, however, is to find mathematical expressions for the observed
effects.
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2.4.2.5 Reinforcing steel

The previous sections all concerned the material properties of the concrete, but of course there is
reinforcing steel as well. As mentioned in section 2.3, the reinforcement is ignored in the thermal
analysis, but it plays an important role in the structural analysis. Like concrete, the reinforcing steel
has thermal strains and mechanical strains, the only difference being that in this case the strains are
not vectors, but scalar values.

�=�thermal
�mechanical

Because the concept of LITS does not apply to reinforcing steel, the thermal strain is simply
calculated from:

��thermal=� �T

The thermal expansion � is temperature dependent; the formulation is taken from the Eurocode.

�=1.2�10�5
0.8�10�8T for T�750°C
�=0 for 750°C�T�860°C
�=2�10�5 for T�860°C
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The stress-strain relation is also taken from the Eurocode, although the softening part has been
omitted, and ideal plasticity has been assumed instead (i.e. �st=$ )

Stress-strain relation Derivative Domain
�=E � �

� =E 0����sp

�=�sp�c
b
a �a

2���sy��	
2 �

� =
b��sy��	

a�a2�����sy 	
2

�sp����sy

�=�sy �
� =0 �sy��

With the following functions:

a2=��sy��sp 	��sy��sp
 c
E 	

b2=c ��sy��sp	E
c
2

c=
�� sy�� sp	

2

��sy��sp	E�2�� sy�� sp	

�sp=
�sp

E

As with the concrete stress-strain relation, a derivative of zero gives problems with convergence, so
these domains are replaced with a very small descent of 1×10-12  N/mm2.  For the compressive domain
the same curve applies, but then, of course, inverted.
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The remaining external parameters are:
� sy �sp E �sy

In accordance with the Eurocode, for the fourth value a constant value of �sy=0.02 will be used,
but the other three will be temperature dependent, using a temperature factor that is redirected to a
table in the data file (which can be modified for different types of steel). Graphs in this report were
created using the values for hot rolled class N steel.

� sy=k sy� sy , ref

� sp=k sp�sp ,ref
E=k EEref

The degradation of the yield stress (dotted line), proportional limit (continuous line) and Young's
modulus (dash-dotted line) with temperature.

This means that the following values should be input in the DIANA data file:

Constant material properties Temperature dependent material properties

� � sy , ref [force/area]
� � sp , ref [force/area]
� Eref [force/area]
� �sy [-]

� k sy �T 	 [-] 
� k sp �T 	 [-]
� k E �T 	 [-]
� ��T 	 [1/temperature]

If the cooling down phase is to be simulated, a separate unloading branch should also be added. As
with concrete, this can be done using either secant or elastic unloading. Since stresses and strain occur
in only one direction, and it is highly unlikely that steel that has yielded in one direction will
subsequently yield in the other, neither should present particular problems.
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2.5 Results

Now that the complete material model is set up, results can be produced. For this purpose, a fictitious
tunnel cross section is used with a constant wall thickness of 1250 mm, a reinforcement area of 2094
mm2/m (ø20-150 mm) for the outer reinforcement and the middle wall, and an area of 3272 mm2/m
(ø25-150 mm) for the inner reinforcement. Both tunnel tubes have an area of 10,000×5000 mm.

The compressive strength of the concrete is taken to be 35 N/mm2 (at 20 ºC), its tensile strength 2
N/mm2. The value of pt is taken equal to 0.9. The steel strength is assumed to be 500 N/mm2, with the
proportionality limit � sp , ref being 300 N/mm2. The Young's modulus of the reinforcing steel is taken
to be 2.1×1011 N/mm2. The temperature dependence of all these values is as shown in section 2.4.2.2
and 2.4.2.3; values for the thermal analysis are as mentioned in section 2.4.1.

The concrete is loaded by its dead weight (calculated from a temperature independent density of 2400
kg/m3) and by soil and water pressure. Although technically the tunnel is not 'fixed' in any direction
but only kept in place by equilibrium between its weight and external forces, a finite element
simulation has problems with such free constructions and needs a point of reference.

Therefore the entire underside of the tunnel is modelled as being vertically fixed. Since the asphalt in
a tunnel would provide some isolation, the bending (and therefore, possible cracking) of the underside
is always less than that of the roof, the deformations here are not a point of interest, so this can be
safely done. By consequence, no boundary elements (that provide the temperature-time relation) are
applied to the underside either. The roof of the tunnel is loaded with a constant line load of  200
kN/m.

In the horizontal direction a fixed constraint at a single point in the centre of the middle wall has been
applied, so that the external forces on the side walls are at least properly modelled. Technically these
would be triangular line loads, but for this purpose they are simplified to constant line loads of 350
kN/m. The loads are applied using simple continuous face loads; a few simulations have been
performed with non-linear springs, but this gives huge problems with stabilising the displacement
field, without producing fundamentally different results.

This is also the reason why the horizontal pressure is simplified to a constant line load; another option
would have been to use a constraint line instead of a constraint point (i.e. fix the entire middle wall in
the horizontal direction), but this would probably have a greater impact on the value of the model,
because it would prevent the connection between the middle wall and the roof from turning.

For the softening parameters the original intention was to take the values advised by Hordijk (
c1=3 , c2=6.93 and wc=160!m ), as well as a realistic value for the fracture energy under

compression, such as Gc=800N /mm2 (although estimations of the fracture energy of concrete
vary significantly between different researchers). However, as there are three integration points per
element, yet the entire element length Lel is used during calculation, both wc and Gc should be
multiplied by three. Unfortunately this would cause the calculations to diverge as soon as plasticity
starts on the heated side.
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The obvious solution to this is of course to increase the value of the fracture energy under
compression, which indeed improves the performance of the simulation, but convergence problems
persist for all remotely realistic values of Gc. Therefore this value is set to Gc=$ instead, i.e. ideal
plasticity. This is of course not realistic, but since the stresses on the heated side are not the primary
interest (the concrete might have spalled off here already), this simplification should not present a
major problem (although the strains on the heated side are the driving force behind the phenomenon).

Unfortunately this does not completely solve the convergence issue. The initial phase during which
plasticity occurs on the heated side is simulated without problem, but the calculation then diverges as
soon as plasticity occurs on the unheated side. This means that the fracture energy in tension should
also be increased, with significantly better results being obtained for wc=16!m , although this
often still leads to divergence at a later stage in the calculation, when the cracks are expanding. It is
only with wc=1.6!m that the calculation can be run completely and stable under a normal
variation of different parameters (see also chapter 5 - sensitivity analysis), yet this is of course a
significant loss of accuracy.

Contrary to what one might expect, convergence is actually better with the linear stiffness model than
with Newton-Raphson. Refining the mesh also reduces convergence, probably because multiple
elements close together all reach the yield point at once. A cruder mesh, on the other hand, improves
convergence (only one element is yielding), but, of course, at the expense of accuracy. It should
therefore be concluded that convergence of the simulation is an important boundary condition that
should not be ignored when designing a material model.

Above is a screen shot of the results obtained with the material model. Plotted here is the value w,
which has the advantage that it is independent of direction (only the direction with the largest value of
w is used), and the resulting images is not cluttered with information on plastic strains in
compression. As can be easily seen, there are three major cracks, two in the roof, adjacent to the
middle and the side wall (the former being the larger of the two), and one in the side wall, just
underneath the roof. In addition, there are several normal bending cracks, both in the roof and in the
side wall. The spatial relations between the cracks are best understood by plotting the deformations in
the same graph (needless to say, the deformations here are greatly exaggerated). The sag of the roof in
the middle of the span is equal to 10 mm.
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These plots were obtained using a value of wc=16!m , which gives divergence before completing
the entire Rijkswaterstaat curve. These plots therefore pertain to the last step before divergence, which
corresponds to 41 minutes of heating. With wc=1.6!m the entire two-hour curve can be quickly
calculated, but then the cracks are smeared out over many elements and not as concentrated. The total
crack width can then still be found through summation of the crack widths per element, but
wc=16!m (with concentrated cracks) produces a clearer picture, which is why this value is

chosen for this chapter. Note how limited the temperature ingress in the cross section is at this point.

Temperature distribution over the cross section after 41 minutes of heating. Shown is a fragment of
the tunnel roof, with a height of 1250 mm; the white lines represent the reinforcement.

It is also of interest to plot the stress distribution for tensile stresses. In the graph on the next page, the
stresses in the largest principal direction ( �1 ) are plotted. In the middle of the span, there are
compressive stresses on both the underside (because of thermal expansion) and the top side of the
roof (because of the bending), with a tension band in between. The same occurs in the side wall, but
at the corners this tension band moves towards the outside edge, which is why the cracks appear there
(but note that in this graph the actual crack locations are marked by a lower stress level, because some
softening has already taken place).
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Stress distribution in the cross section after 41 minutes of heating, showing the largest principal
value, i.e. tension. The scale is in N/m2, so the limits used here are 0 and 1.5 N/mm2 (for a concrete
with a reference maximum tensile strength of 2 N/mm2)

The graph below shows the (tensile) stresses in the reinforcement. As was to be expected, the stress
locations coincide with the crack locations, with a peak value of 420 N/mm2. The stress area hardly
extends beyond the crack location because embedded reinforcements have been used, which
presupposes perfect bond. The reinforcement on the underside of the roof is in compression, because
it is affected by thermal expansion just as the concrete surrounding it is. This means that this
reinforcement does not help to reduce the bending.

On the left hand side is a closeup of the the crack
adjacent to the middle wall, which is the largest of
the cracks. The triangular shapes seen here are
caused by the shape of the mesh, but it can be
clearly seen that the crack is curved, starting
somewhat to the right of the middle wall, but
moving toward it gradually. At the top side, the
smeared crack is essentially two elements wide
(with some very small values of w in adjacent
elements), which means that the crack behaviour
can be described by two crack width-time
relations, shown on the next page.
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Two crack width-time relationships for two adjacent elements in the crack in the roof adjacent to the
middle wall.

Apparently the crack appeared after roughly fifteen minutes (with only very small values of w
preceding it), with the second element becoming active only after 28 minutes. Note the brief
horizontal section at the corresponding location in the graph of the first element. There is again a brief
horizontal section in both graphs at 41 minutes, i.e. immediately before divergence. This suggests that
at this point a third element will join the crack. It is possible that this is, in fact, the cause of the
divergence in this example, but that does not necessarily follow from these graphs.

As mentioned in section 2.4.2.3, values for w are computed by multiplying the crack strain by the
element length (for each integration point). Because the graphs show the mean value of w per
element, the total crack width can be found by summating these values, without having to correct for
the number of integration points. The total crack width after 41 minutes is found to be:
1�10�3
8�10�4=0.0018m=1.8mm .
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On the right hand side a closeup of the corner of
the tunnel is shown, where the two other cracks
are. As can be clearly seen, both cracks are
slightly curved as well, point towards the inside
corners of the element. The crack in the roof
reaches a total crack width of roughly 0.6 mm,
whereas the crack in the side wall reaches a value
of roughly 1.0 mm, summated over the various
elements at the surface.

A particular remark should be placed here with
regards to the shear capacity of the cross section.
In reality, cracks cannot transmit shear stresses,
which means that the shear force would have to be
transmitted by the (smaller) remaining area, but in
the model, this property is not implemented. This
is of particular interest, because the cracks occur
at the connection between the roof and the walls,
where coincides with the locations of the largest shear force.

The actual shear stresses occurring cannot be properly assessed in the current model. A proper model
would require assumptions with regard to the speed with which the shear stiffness decreases:
obviously, it does not abruptly drop to zero (nor would that be practical to implement, as it would
cause an important discontinuity between the steps, see section 2.2). However, a quick calculation can
be made to estimate the size of the shear stresses: if the roof thickness adjacent to the middle wall is
reduced to 20% of its original value, and the shear stiffness of the other 80% has been completely
reduced to zero, the shear stress at this point would be equal to:

� xy=

1
2
Lspan ��horiginal
qexternal 	
hremaining
hchamfer

=

1
2
10 �2400�1.25
200�103 	

0.25
0.1
=2.9�106N /m2=2.9N /mm2

If the chamfer is also reduced in height (due to explosive spalling), a very small cross section might
be remaining, which could lead to collapse at this point. However, in reality tunnels are never
completely unprotected: if PP fibres are applied, explosive spalling should not take place, and if fire-
resistant plates are applied, the crack will not be this deep. Therefore, this value can be seen as a
reasonable approximation.

This shows that it is necessary to apply shear reinforcement at these locations, and to base the
calculation of this reinforcement, as well as the design of the chamfer, to the possibility of a crack
occurring on the unheated side. As it happens that most immersed tunnels do have shear
reinforcement at these locations, it is likely that this is not a major problem for existing tunnels, but
nonetheless, it would be wise to incorporate this knowledge into future designs. It should also be
noted that the shear reinforcement should be adequately protected from high temperatures, as its
properties will decrease with temperature similar to the reinforcing steel.
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3. The lattice model

After an estimation of the location of the cracks using smeared cracking in a finite element analysis,
the original idea was to 'zoom in' on a crack, and further analyse its shape, width and depth, as well as
the development with time of these aspects. This was to be done using a lattice analysis, where the
concrete is modelled by a lattice of one-dimensional elements.

In this case, the crack widths would not have to be calculated from summation of the fictitious crack
widths, which means that it would not be as problematic to take a low value for, for example, wc,
which would cause the cracks to be smeared out over many elements rather than localised in one
chain. This way, the convergence problems addressed in the previous chapter would have been largely
avoided.

In a standard lattice analysis, an external load is applied and increased until the first lattice element
yields. This element is then removed from the system, after which the the load is increased again until
the second element yields. The process continues until either all elements have been removed, or the
load cannot be further increased. The load, in this context, can be either a force or a prescribed
displacement.

If the lattice analysis is to be applied to the problem at hand, however, the parameter time needs to be
introduced. This can be done by making the external load (force or displacement) time-dependent, and
introducing discrete time steps. In each time steps a different number of elements may fail to
accommodate the load change, which may also mean that at a particular time step no elements fail at
all. It is always necessary to calculate the redistribution of forces after one element has failed, which
means that multiple lattice calculations will have to be performed within one time step.

The initial idea was therefore to use the output of the finite element analysis as input for the lattice
analysis. If, for example, the size of the entire lattice analysis is taken to be equal to one or two
triangular elements in the FEM analysis, then the stress-time relationship (or strain-time relationship)
of the Gauss points surrounding these elements can be used as boundary conditions for the lattice
analysis.

This reasoning, however, suffers from the important flaw that DIANA already assumes the behaviour of
the element to be scrutinised during the finite element analysis, and any results obtained from a lattice
analysis will be pre-determined by the assumptions during the FEM analysis. For example, if the
strain-time relation as pictured on the next page is taken for the boundary condition, then without
doubt the crack will start after 900 seconds, and the eventual crack strain will be equal to 5.5×10-3.
The problem is not solved by using a wider portion of the FEM analysis, because the resulting curves
would still be dominated by the time at which cracking start, and the subsequent increase of strain.

The same problem would arise if one would take the stress-time relation: the onset of stress decrease
occurs exactly where DIANA assumes the crack to start, and the rate with which the stress decreases
afterwards is governed by the softening assumptions in the material model. In this case the lattice
analysis cannot possibly add anything to existing FEM analysis (aside from producing a visual
representation of the assumed crack), whereas the aim is higher accuracy and more detail. This means
that the finite element analysis and the lattice analysis cannot be decoupled.
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Stress (decreasing) and strain (increasing) development in a crack, as predicted by DIANA.

The solution is therefore to somehow integrate the lattice analysis into the finite element analysis.
DIANA has a built-in lattice module, but its application is rather limited, since it only allows for a linear
static analysis (which means it cannot be combined with the existing non-linear time-dependent
analysis). Nonetheless, the lattice analysis can just be re-created in DIANA, if the basic principles are
observed:

1. A lattice is built of regular beam elements
2. The beams are somehow connected to the two-dimensional continuum elements
3. The lattice beams have a linear elastic stress-strain relation
4. A beam that reaches yield stress should be removed from the system
5. Time steps are chosen in such a way that only one elements can yield per step

There are no automatic meshing options for dividing a field into lattice elements in DIANA, but by
copying elements using relative translations, a regular mesh can easily be created. If this mesh
consists of regular triangles with corners of 60º, the shape of the crack is only marginally influenced
by the shape of the mesh (see Schlangen & Garboczi, 1997).

DIANA offers three types of beam elements, numbered class-I, class-II and class-III. The latter contains
curved beam elements, which are not applicable here. In addition to beam elements there are also
truss elements, which cannot bend and transfer no moments. Since Schlangen (1993) asserts that the
moments are important to properly describe the fracture process, trusses should not be used here. 

The primary difference between class-I and class-II elements lies in their shape functions, the class-II
beams having an extra term in the shape function for displacement in the direction of the beam length.
This allows the strain to vary linearly over this length, whereas class-I beams can only have a constant
strain.
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This also has consequences for the strain and stress vectors: in a class-I beam �xx is constant, so the
strain vector can directly relate to the change in length and the curvature, whereas in a class-II beam
�xx is the primary value of interest. There are then multiple integration points over the (fictitious)

height of the beam, from which the curvature can be calculated by the user. The same applies for the
stress vector: for class-I beams DIANA can directly calculate N and M at the two ends of the beam; in a
class-II beam these need to be computed from the stress distribution over the beam height.

A beam element (L6BEN or L7BEN). Image taken from the DIANA manual (TNO DIANA, 2007)

Class-I (L6BEN) Class-II (L7BEN)
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It goes without saying that class-I beams are easier to use, and, for a standard lattice analysis, these
should be enough to fulfil the required function. In the problem at hand, however, there is a spatial
temperature distribution, which cannot be accommodated in beams with a constant strain. Secondly,
these beams do not allow the use of a user-supplied material model, which will be needed to make the
yielded beams disappear. For these two reasons, the class-II beams must be used for this particular
problem.

If the lattice is assembled to create a large triangle (which will, of course, also have angles of 60º),
this can be connected to the rest of the tunnel by 'cutting out' a triangle of the continuum elements at
the location where the crack was observed in the first analysis (without lattice elements). The proper
connection between the two types of elements is ensured by the use of tyings, which relate the
degrees of freedom of different elements in a way that ordinary meshing does not.

The tyings can be used to connect lattice elements to the sides of continuum elements. Because the
lattice elements are much smaller than the continuum elements, there will not be as many nodes on
the continuum side; the tyings ensure that the (under normal circumstances) unconnected lattice nodes
are connected to the nearest continuum nodes. But tyings are also necessary for connections where
lattice elements and continuum elements meet in the same node, because by default the curvature of
the beam would not be linked to the curvature of the continuum elements. The tyings here ensure a
non-rotating connection.
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A (fictitious) cross section with a lattice part (regular triangular mesh) connected to a continuum
mesh (consisting of quadrilaterals). 

Although the built-in lattice module in DIANA was in itself of no use for the purposes required here, its
automatic tyings generator AUTOTY can save a lot of work, with usually only minor changes being
required to its output file (in this case, the use of triangular continuum elements instead of
quadrilateral, which causes a minor renumbering of the nodes). Because AUTOTY is an executable
command instead of a preprocessor option, this means running a demo file, and (after any necessary
editing) copying the outputted tyings back into the real data file.

The standard embedded reinforcements do not work anymore for lattice elements, because they can
only be embedded in continuum elements. This means that, instead, the reinforcement at this location
should be modelled explicitly using beam elements, connected to the continuum elements using
interface elements. Bond-slip behaviour is then defined for the interface elements, for example using
the cubic function by Dörr (1980). The reinforcements can in no way be bonded to the lattice
elements, but since this only a small length, this should not be a major problem.

The stress-strain relation of the lattice elements is best described using a user-supplied material
model, which can also keep track of which elements have disappeared. The problem here is that
normal lattice behaviour entails brittle failure of each of the elements, which is problematic for the
convergence of the simulation (see section 2.2). To solve this problem, a hardening parabola and a
softening curve should be added to the linear elastic branch (the same curve as used for the continuum
elements; see section 2.4.2.3).
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Adding a softening curve to a lattice analysis would only enhance the model, because softening is a
realistic aspect of concrete. However, as part of the softening is already accounted for by the lattice
model itself, only softening on a microlevel can still be described by an element itself. This means
that a shorter softening curve should be used with a smaller fracture energy. The Hordijk curve can
easily be adapted for this purpose by using a smaller wc, although - again - convergence problems
limits the values that can be taken for this parameter.

Any element that has yielded should be marked as having disappeared (even though it can still have
stresses in its softening curve) to facilitate the plotting of the crack after the simulation is complete
(although note that the crack width is the elongation of the elements having 'disappeared', not the
open space in the plot). This can be done by creating a group which contains the element numbers of
the remaining elements (including the continuum elements), which will then become available in the
post-processor as a set which can be plotted (although an extra calculation command needs to be
given after the actual calculation is over, to ensure that the group information is actually read).

The difficulty is now to ensure that only one beam element fails per time step, because the calculation
cannot be restarted from beam #1 once it is found that, for example, beam #47 has yielded. It is not
possible for the material model to give some feedback to the iteration mechanism, so the time step
cannot be adjusted in the process. The only thing that can be done, therefore, is to take very small
time steps throughout the simulation, but this is rather inefficient. However, as the error introduced by
four or five elements failing at once is relatively small (especially when 'failing' entails they are still
softening), accepting that multiple elements will fail at once is a more practical approach. There is a
balance here, of course, between accuracy and efficiency.

The major problem of applying the lattice model in a normal finite element method lies in the
combination of the softening curve (which is required to avoid brittle failure) and the class-II beam
elements. As pointed out before, these beams do not simply have the normal force or the moment as
its property, but the local stress � xx in different integration points over the height of the element. Of
course, it is not difficult to calculate N and M from �xx , but the material model necessarily works
integration point based, rather than element based.

Because of the nature of the problem, there are typically large moments in the lattice elements that
will lead to �xx exceeding the set limit value. Because the material model evaluates the elements per
integration point, it is quite possible that only the seventh integration point yields, whereas the first
sixth points had lower strains (and, typically, a number of them compressive). This would
theoretically lead to a local failure of an element, but that can, of course, not be accommodated by a
single element (and meshing the beam elements into small continuum elements is not very efficient
either).

If the whole element would have been assumed to disappear instantly, such a local failure would not
have been a problem (it would automatically imply total failure of the element to which the
integration point belongs). Yet, as has been pointed out before, brittle failure is not possible, because
continuity between the time steps must be observed. The softening of only one integration point,
however, leads to an alteration of the normal force and moment field, because the ratio between the
stresses is altered (and the stresses calculated at previous integration points can not be retroactively
changed to adapt the softening of an integration point encountered later in the calculation). If this
alteration does not fit in the global calculations of the simulation, divergence results.
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Of course, convergence is improved by taking larger values for wc, i.e. lengthening the softening
curve and increasing the fracture toughness. Besides this not being realistic, this also introduces a new
problem: it means cracks will not localise. Because the lattice elements are typically very small, there
are only small differences in stress between adjacent elements. This means that, after one element has
failed, the other elements next to it will also fail.

This is not solved by taking smaller time steps, because the first element is still softening when the
next elements are failing. This means that even when the time steps are taken so small that only one
element fails per time step, still all elements in the first row (i.e. the one next to the surface) will fail
(one by one), before the first element in the second row fails. Subsequent strains are spread out over
the entire row of elements, which means that the result is in effect smeared cracking.

In order to force the crack to localise, one element was then removed in advance, creating a small
notch. The first element to fail is then, of course, the element in the second row just beyond the notch.
After this, however, the elements in the second row adjacent to the first element will start to yield,
without anything happening in the third row. After a number of elements having yielded in the second
row, the calculation diverges. Hence, this option only moves the problem, without solving it.

A second option tried is to randomly distribute the strengths of the lattice beams. If the bandwidth is
not too large, this will actually lead to a localisation of the crack, starting in, for example the second
row. From there, the crack grows inwards properly, with only one or two elements failing adjacent to
the main path (which is not a problem; cracks are irregularly shaped after all). However, as the crack
growth proceeds, the stresses also build up in the remaining element in the first row. At the point
where this element is supposed to yield, the simulation diverges.

In reality, this would obviously have involved the moving of the stresses in the yielding element in
row one to the first intact row, for example the fifth. However, this would imply a radically different
stress field, which violates the principle of continuity between the steps, as described in section 2.2.
Different functions for the strength distribution give different results, but this problem always persists.
Therefore randomly distributing the strengths is not a solution either.

This therefore leads to the fundamental problem of integrating the lattice analysis with the rest of the
finite element analysis: it is not possible to find a value of wc (or, indeed, any softening curve) that
will lead to usable results. If the value is too small the calculation will diverge because of the stress
situation within an element; if the value is too large the crack will not localise. Since there is also a
range of values for which cracks fail to localise and the simulation eventually diverges, it is likely that
there is not a single applicable value of wc. It should therefore be concluded that a lattice analysis
cannot be integrated in a non-linear time dependent finite element analysis.

Perhaps the solution would be to integrate the entire lattice model within a single (continuum)
element. Then DIANA could treat it like any normal continuum element, but when the calculation
reaches this element, the user-supplied material model would initiate a complete lattice analysis with
all elements being fictitious, iteratively increasing the load (a factor times the strain vector) until the
actual value of this vector is reached. The resulting stresses would then be returned to DIANA as the
stress vector.
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However, it is doubtful what the convergence behaviour of a calculation involving such an element
would be, especially if multiple of these 'lattice model elements' are used adjacently. And how would
one calculate the derivative of the stress vector in the tangent stiffness modulus, required to stabilise
the calculation? This would probably require performing multiple analyses subsequently with a
slightly modified strain vector, calculating the derivatives from the differences in response, which is
not very efficient.

A completely different approach to assessing crack width and depth would be to use discrete crack
elements. The length is initially equal to zero, and can only grow once the yield stress has been
reached (at which point opening can start abruptly or using a softening curve, the second probably
being advisable). The downside is that one has to specify both the exact location and the shape of the
crack in advance, which reduces the amount of information that can be obtained. Using multiple
discrete crack elements next to each other and leaving it to the finite element analysis to open the
appropriate one would avoid this, but this might lead to convergence problems.
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4. Fire tests

4.1 Test setup

Concurrently with this master's thesis, actual fire tests were carried out at Efectis, aimed at finding the
difference between unprotected tunnels, tunnels protected with fire-resistant plates and tunnels
protected with fibres. The fire tests were planned before this master's thesis was started, which means
that the test specimens were already designed and ordered beforehand, but during further planning
and execution there was a close cooperation. Performing actual fire tests is an important opportunity
to assess how realistic the outcome of the model is.

Because an actual size tunnel would not fit in the oven, the decision was made to scale the tunnel to a
size 1:10, meaning the resulting specimen has two tubes of 1000x500 mm and a consistent wall
thickness of 125 mm. To make casting the specimens easier, all corners were made straight instead of
chamfered. Because scaling the reinforcement is rather difficult, two nets of ø12 - 150 mm were used,
with 35 mm cover on both. This means the reinforcement is relatively heavy, but also relatively
farther from the edge.

The scaling of the wall thickness is problematic, because the phenomenon of cracking on the
unheated side is governed by the relation between the thermal conductivity and the wall thickness. As
the thermal conductivity cannot be scaled, this means that the 'heated region' of the wall (the region
that reaches temperatures in excess of, for example 100 ºC) will be relatively large compared to the
'cold region' (where such temperatures are not reached), a fundamental difference from an actual
tunnel.

This could have been compensated by also scaling the time scale, i.e. also increasing the rate of
temperature increase with a factor ten, but this is beyond the capacity of the oven. In addition to this,
the resistance of the wall to bending will be decreased because of its smaller height, which may lead
to larger cracks than in a real tunnel (in a relative sense). Also, the moisture system is different,
because moisture from the heated zone can reach the unheated side quicker. Performing the tests is
still valuable, however, because it does provide feedback to the FEM simulation, as long as these
differences are kept in mind.

For the testing nine different specimens were cast: three specimens without fibres, three with fibres 18
m in diameter, and three with fibres 32 m in diameter. All fibres were 12 mm in length. Due to a� �

miscommunication, three additional specimens were produced with fibres 32 m in diameter and 6�
mm in length. The specimens were cast in February and March 2008. The specimens were all
supposed to be B35, but the resulting strengths varied strongly.

In March 2008 a preliminary test was performed on a discarded specimen (whose surface was deemed
too rough). This test primarily functioned to assess the capabilities of the oven, and to see whether
developing cracks could be clearly observed. The test was not intended to test the fire characteristics
of the particular specimen, therefore it was not a problem that the specimen was discarded and only
one month old at the time of testing.
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The specimen had an arbitrary length of 2000 mm, whereas the oven was 3000 mm in width. Gas
burners were present in the oven on the opposite walls, so extra constructions of autoclaved aerated
concrete (AAC) blocks were used to build extra walls between the tube to be heated and the oven
wall. These extra sections were then covered by a fire-resistant plate, so that the fire could not escape
here. A fire-resistant plate was also placed on the bottom of the specimen, to represent the asphalt. A
skew wall of AAC blocks were also placed before the gas burners, to improve air circulation, rather
than having the gas burners blow directly towards each other.

A schematic of the test setup with the specimen in grey, as well as a photograph taken during the
building phase. The skew wall was not yet placed here. Schematic and photograph by Efectis.

As can be seen in the diagram, there is a slight corner in the AAC walls, because the ventilation holes
(in the oven floor) would otherwise be exactly underneath the walls. The ventilation system was
turned on during the tests, to avoid pressure building up in the tubes (which is a different effect that
should not be tested at once with the temperature). Thermocouples were placed between the walls and
the specimen, to measure the temperature in front of and inside the tube (the specimen itself was not
bored). Additional thermocouples were placed on the unheated side of the roof.
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Throughout the preliminary test, the specimen was heated using two gas burners at maximum rate.
The resulting temperature curve, shown on the previous page, is lower than a standard Rijkswaterstaat
curve, probably due to the size of the open space in the tube combined with the ventilation system. It
can also be seen that the temperature in front of the flame is significantly higher than the temperature
next to it, suggesting that air circulation is not optimal. The temperature curves inside the tunnel show
a horizontal section at 850 degrees, most likely corresponding to explosive spalling (this also
corresponds to sounds heard during that period).

The specimen after eight minutes of heating. Notice the radial crack pattern on both sides of the
specimen (with moisture emerging). With some difficulty, the dry crack adjacent to the middle wall
can already be seen here, where the arrow points.

The first cracks on the unheated side were observed after roughly five minutes, appearing in a radial
pattern at the sides where the gas burners were located. A lot of moisture emerged from these cracks.
After ten minutes, a longitudinal crack exactly adjacent to the middle wall was observed (this relative
position could be determined because the width of the tube was marked on the exterior). No moisture
emerged from this crack, which made it difficult to see (and therefore, possible that it had existed for
several minutes before being noticed).

The specimen after 14 minutes of heating.
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Between ten and fifteen minutes after the start of the test, equidistant horizontal cracks (i.e.
perpendicular to the middle wall) appeared over the entire length of the specimen, from which a lot of
moisture emerged. During this period cracks also appeared in the side wall of the specimen, running
over the entire length. After twenty minutes, the top of the specimen was completely moist, which
limited the view on the exact location of the cracks. However, it could clearly be seen that the
longitudinal crack adjacent to the middle wall had grown to a significant size, estimated to be between
0.5 and 1.0 millimetre.

The specimen after 20 minutes of heating. The amount of water emerging from the cracks has become
so large that it is now flowing toward the unheated side, even though no cracks appear here.

A photograph from the reverse angle showing the side wall of the picture after 20 minutes of heating.
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The second largest crack at this point was a longitudinal crack in the side wall, located exactly
beneath the height of the roof. A radial pattern also appeared at the two sides of the specimen (where
the burners were), from which a lot of water emerged (relatively little water emerged from the large
crack). After thirty minutes the test was stopped.

The specimen after 30 minutes of heating, when the water on top of the specimen is boiling. Notice
how clearly the crack adjacent to the middle wall stands out now.

Water emerging from the middle wall after 30 minutes of heating. The photograph is taken from the
unheated tunnel tube.

During cooling down, the water dried up again, leaving dark marks where the cracks had been. At this
point it could be observed that several longitudinal cracks had developed on the roof parallel to the
main longitudinal crack, although these cracks do not run over the entire length of the specimen. The
distance between the cracks appeared to be equal to the distance between the perpendicular cracks,
which suggests some relation with the reinforcement net, which also had equidistant bars.
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The specimen during cooling down. 

A photograph from a reverse angle showing the side wall during cooling down. It can now clearly be
seen that beside the radial pattern, a single longitudinal crack dominates.
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The temperatures on the unheated side were also measured, but these temperatures appear to be
mainly influenced by the presence or absence of water at the particular location of the thermocouple.
After 25 minutes the water on top of the specimen was boiling, explaining the plateau at exactly 100
ºC. The dashed line represents the air temperature of the surroundings.

A few days after the test the specimen was removed from the oven, and the inside of the tube could be
observed. As can be seen in the picture, noticeable spalling had taken place.

The inside of the heated tunnel tube a few days after testing, showing that the reinforcement has been
laid bare.
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4.2 Adapted finite element simulation

Because tunnels specimens used in the fire tests are fundamentally different from actual tunnels, the
previously described mesh (see section 2.3) cannot be used to predict the behaviour of these
specimens. Therefore a special mesh has been created that properly describes the dimensions of the
scaled tunnel elements. If the model can accurately predict the behaviour of the specimens using this
adapted mesh, then it seems reasonable to assume that its prediction of the behaviour of an actual
tunnel using the original mesh would also be accurate (although this is an extrapolation).

The adapted mesh used for to model the test specimens. The continuous lines in the middle of the
cross section represent the reinforcement.

Of course, the fact that the mesh is a factor ten smaller than the mesh shown in section 2.3 does not
show in the above picture, because it is stretched to fill the width of this page, but that does result in
the more central placement of the reinforcement, as well as in the individual elements appearing
larger (although in actual size they are smaller). The specimen is not loaded except by its own weight.

If the unheated side of the tunnel reaches higher temperatures, it will be cooled by the outside air,
which will still be room temperature. Therefore additional boundary elements should be added to this
side (as well as to the unheated tunnel tube), otherwise this would constitute an adiabatic boundary.
The properties of the boundary elements are identical to the boundary elements described in section
2.4.1, but the air temperature-time relation is set to be constant at 20 ºC.

It is known from the preliminary test that moisture will emerge on top of the specimen during the test,
which will over time reach boiling temperature. This will of course affect the surface temperature, but
this cannot be modelled, because this water may not emerge in every test, or at least not at the same
rate (and indeed this varied noticeably between the subsequent tests). For the heated side, the curve
used in the preliminary test was used (instead of the Rijkswaterstaat curve), because this curve would
be used for all further tests.

The concrete strength was found to be 47.4 N/mm2 in a standard compressive cube test. The actual
compressive strength that can be input into the model can therefore be assumed to be roughly
0.72�47.4=34N /mm2 . However, as these tests were performed 28 days after casting, but the

actual fire test was performed 133 days after casting (19 weeks), the concrete strength should be
assumed to be higher by this point. Therefore, a compressive strength of 40 N/mm2 was assumed.
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Unfortunately, the moisture content of the specimens was not measured, and variations between the
specimens may have resulted from different storage conditions (outside and inside). As the moisture
content is not a model parameter, this does not directly influence the results (although general
assumptions have been made, as explained in section 2.4), but a possible variation may be
problematic because it influences the comparison.

A summary of the material properties used is given in the table below. 

Concrete properties
Conductivity See graph in section 2.4.1
Volumetric specific heat See graph in section 2.4.1
Density 2400 kg/m3

Coefficient of thermal expansion See graph in section 2.4.2.2
Tensile strength (at 20ºC) 2 N/mm2

Compressive strength (at 20ºC) 40 N/mm2

Decrease of strength with temperature See graph in section 2.4.2.3
c1 (Hordijk parameter) 3
c2 (Hordijk parameter) 6.93
wc (Hordijk paramater) 16 m�
Relative height of parabola (pt) 0.1
Compressive fracture energy 1×1050 (i.e. infinity)
Load induced thermal strain (LITS) factor 2

Reinforcing steel properties
Coefficient of thermal expansion See graph in section 2.5
Tensile and compressive strength (at 20ºC) 500 N/mm2

Proportionality limit (at 20ºC) 300 N/mm2

Young's modulus (at 20ºC) 2.1×1011 N/mm2

Decrease of strength, proportionality limit and
Young's modulus with temperature

See graph in section 2.5

Strain at peak stress 0.02
Boundary element properties

Convection factor 25
Emissivity 0.7

In the first analysis run with this mesh and these parameters, the deformations of the tunnel were
completely different from those observed in the preliminary test, with the roof bending upwards rather
than downwards, as shown in the picture on the next page. This is of course not realistic: it could
never happen in a real tunnel (because of soil and water pressure), and clearly did not happen during
the preliminary test either. The error might have been caused by an underestimation of the thermal
strains perpendicular to a load (see section 2.4.2.2) at the underside of the roof (where the 'load' is
caused by the build-up of thermal expansion in the horizontal direction).
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The incorrectly predicted deformations when no load is applied except for dead weight.

In subsequent analyses a small vertical load of 0.1 N/mm2 has been added to the roof of the tunnel.
Given the strength of the tunnel it is not to be expected that this will make a difference to the stress
and strain distribution in the tunnel, but evidently it is enough to cause the proper failure mechanism
to occur. The result is shown below for a concrete heated 30 minutes using the test curve described in
the previous section.

The fictitious crack widths w after 30 minutes of heating, as predicted by the adapted model.

As can be seen from the picture, the cracks are not localised as they were in the analysis shown in
section 2.5, which makes the plot somewhat less clear, but the essential information can still be
derived from it. There are still three main cracks, two in the roof and one in the side wall, with the
crack in the roof adjacent to the side wall being noticeably smaller than the other two. Bending cracks
on the inside of the element are absent here, probably due to the smaller wall thickness, but this might
also be caused by the (relative) temperature ingress being larger, which facilitates bending. The sag in
the middle of the roof equals 2.4 mm.
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The same fictitious crack widths, with the deformations plotted in the same image.

The temperature distribution over the cross section after 30 minutes of heating. The continuous lines
represent the reinforcement. The height of the roof is 125 mm.

This means that the tension zone is located (relatively) higher in the cross section, because tensile
stresses only develop when an element does not expand enough thermally to facilitate the overall
deformation of the roof. When higher temperatures are reached up to a (relatively) higher point in the
cross section, it follows that tensile stresses also only start at a (relatively) higher point. The overall
shape of the tension band is still the same, although it is more difficult to see because of the shifted
location and because softening has taken place in a wider region.
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The stress distribution over the cross section after 30 minutes of heating, showing the largest
principal value, i.e. tension. The scale is in N/m2, so the limits used here are 0 and 1.5 N/mm2 (for a
concrete with a reference maximum tensile strength of 2 N/mm2).

The fact that the reinforcement is located more inwardly compared to an actual size tunnel means that
now both the inner and the outer reinforcement develop tensile stresses at the crack locations, with the
outer reinforcements reaching the larger values (although this may be difficult to see in the plot), up to
320 N/mm2.

Tensile stresses in the reinforcement after 30 minutes of heating.

In order to assess the crack width it is necessary to summate the fictitious crack widths over the entire
width, which gives a graph such as displayed on the next page. The total crack width for the crack in
the roof adjacent to the middle wall is then found to be equal to 0.9 mm. It cannot be determined
whether this represents a single crack or multiple cracks with some distance in between (a question
that would have been answered by the lattice model), but based on experience with the preliminary
test, allotting the entire crack width to a single crack seems a reasonable assumption.

Note that these fictitious crack widths are computed using an equivalent element length, which is the
diameter of the circumscribed circle of the triangular elements. This relates only to the size of the
elements, and not to its orientation. Some elements have a side adjacent to the surface, whereas others
only have a tip touching the surface. It can safely be assumed that the principal direction with the
largest strain is parallel to the surface in all elements, which means that the crack widths are now
effectively summated at various distances from the element surface. This a general problem with
smeared cracking that would have been solved if a lattice analysis had been used, but unfortunately
that turned out not to be possible, as explained in chapter 3.
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The spatial variation of the fictitious crack width w in the crack in the roof adjacent to the middle
wall, after 30 minutes of heating. These values have to be summated to calculate the total crack
width.

Another problem is that it is now more difficult to plot the relation between crack width and time,
because then the crack widths would have to be summated manually at every time step (this cannot be
done automatically by DIANA). Plotting the crack width-time relations of every independent element in
the same graph is not very enlightening, therefore it is easiest to only plot the width-time curve for the
element with the largest resulting value of w, although this is not necessarily the element where the
crack first developed. The curve for the crack width for the crack in the roof adjacent to the middle
wall is then displayed below. Apparently, the crack emerges before completion of the first time step,
i.e. within the first 1.5 minutes of heating.

The variation of the fictitious crack width w with time in one of the elements that constitute the crack
in the roof adjacent to the middle wall.
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The same can be done for the two other cracks. The crack in the roof adjacent to the side wall appears
somewhat later, but still within the first 3 minutes. This crack reaches a total crack width of 0.7 mm
after 30 minutes of heating. The crack in the side wall appears within the first 3 minutes as well; the
summated crack width after 30 minutes equals 0.9 mm (similar to the crack in the roof adjacent to the
middle wall), but it is possible that this value represents two separate cracks, as there seems to be an
additional peak in the graph. In that case, the main crack would only reach a value of 0.7 mm.

Graphs for the variation of the fictitious crack width w in space (top) and in time (bottom), for both
the crack in the roof adjacent to the side wall (left) and the crack in the side wall just below the roof
(right).

In a number of fire tests fire resistant plates were used, of the type Promatect-H. In an earlier research
carried out by Efectis (2007), a computer program was developed that could calculate the interface
temperatures between a Promatect plate and concrete based on any external temperature-time relation
and plate thickness. The results of this program were used as input for the boundary elements to
model the protected tunnels; the fire resistant plates themselves were not modelled explicitly. The
actual fire curves used cannot be reprinted in this report because of confidentiality.

Because the calculated temperatures pertained to interface temperatures and not to air temperatures,
the convection factor of the boundary elements was set to infinity, and the emission coefficient to
unity. With these settings calculations for various plate thicknesses have been made. Because these
calculations had to be made in an early stage of the master's thesis, they used an early, limited version
of the model. The results are shown on the next page.

The graph shows the approximate predicted time until a crack adjacent to the middle wall will
develop. Because the aim was to make a quantitative comparison between the different tests, it was
deemed necessary that cracking occurred in all cases, and preferably within a limited time (to reduce
the duration of the test). At the same time, the longer the time until cracking, the easier it is to observe
variations. As a compromise, a duration of thirty minutes was decided upon, leading to a choice of a
plate thickness of 15 millimetre.
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Predictions for the specimen behaviour for various thicknesses of the fire-resistant plates. Because
this graph had to be made at an early stage, it shows crack strains (for the crack in the roof adjacent
to the middle wall) rather than crack widths, as the latter was not yet implemented.

For the same reason (easy observation of variations), it was decided that the same fire resistant plates
should also be applied to the different fibre concretes, although at least one test of a concrete with
fibres without a fire resistant plate should be performed for reference. The fibres themselves were
assumed not to influence to cracking, therefore no special provisions were taken in the model to
account for any effect of fibres (they would, of course, influence spalling, but this is not part of the
model).

As the standard screw anchors that would be used for this thickness Promatect plate were deemed to
be too long compared to the overall thickness of the tunnel roof, a shorter type of screw was used. To
ensure a proper connection, a small hole was made in the plate with a depth of roughly 7 mm, so that
the anchor screw had to cover only half the plate thickness. The holes were subsequently filled with a
fire-resistant filler (T-compound). Both the roof of the tunnel and the upper 15 cm of the tunnel walls
were covered with Promatect-H plates, as would have been done in a real tunnel.

The concrete strength was found to be 37.6 N/mm2 in a standard compressive cube test. The actual
compressive strength that can be input into the model can therefore be assumed to be roughly
0.72�37.6=27N /mm2 . However, as these tests were performed 28 days after casting, but the

actual fire test was performed 100 days after casting (14 weeks), the concrete strength should be
assumed to be higher by this point. Therefore, a compressive strength of 30 N/mm2 was assumed.

As mentioned before, the values used for the temperature curve relate to the surface temperature,
rather than to the air temperature. Therefore, the boundary elements on the heated side are made
inactive by assuming infinite convection and full emissivity. The boundary elements on the unheated
side remain unchanged. The change parameters are summarised in the table on the next page; all other
values are identical to the values used in the simulation without fire-resistant plates, as listed at the
start of this section.
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Concrete properties
Compressive strength 30 N/mm2

Boundary element properties (heated side)
Convection factor 1×109 (i.e. infinity)
Emissivity 1

Predicted values for w after 30 minutes of heating with 15 mm fire-resistant plates.

The results of the simulation with 15 mm Promatect-H plates are shown in the above plot. As can be
seen, the cracks are more localised now, but the summated crack width is smaller (which is, of course,
an expected consequence of applying fire-resistant plates). This cannot be seen in the above picture
(because the scale has been redefined), but only in a plot of the fictitious crack widths w in space and
time. The sag is smaller as well, equalling only 0.4 mm.

The spatial variation of the fictitious crack width w for the crack in the roof adjacent to the middle
wall after 30 minutes of heating with 15 mm fire-resistant plates.
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The development of the fictitious crack width w in one element with time for the crack in the roof
adjacent to the middle wall for a simulation with 15 mm fire-resistant plates.

As can be seen from these graphs, the crack emerges after roughly three minutes. After 30 minutes of
heating, it reaches an eventual crack width of 0.2 mm (compared to 0.9 minutes for an unprotected
specimen). Note that this value is only valid if it is assumed that these fictitious crack widths all
pertain to the same actual crack (rather than to two parallel cracks), an assumption that does not
necessarily follow from the preliminary test.
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4.3 Test results

Although in total twelve specimens were cast, it was decided to use only a limited number of these for
an initial series of tests. Afterwards, an evaluation would be done which further tests would be
necessary, after which a second series of tests could be performed. The remaining specimens could
also be used as spares in case unforeseen problems arise during a test in the initial series.
Unfortunately, any second series would take place at too late a time to be incorporated into this
master's thesis, so this section will be limited to the initial series.

The preliminary test was 'repeated' as part of the full test series, so that is was performed on an actual
specimen (the specimen in the preliminary test being discarded and being only one month old), but
the result was largely identical (suggesting that maturity between one and three months as a negligible
influence). Cracking occurred after five minutes in the form of a crack on top adjacent to the middle
wall, running over the entire length of the specimen. This crack eventually reached a width of 0.9 mm
(after thirty minutes of heating). A crack adjacent to the side wall emerged simultaneously, but this
crack would only reach a width of 0.5 mm.

A photograph of the specimen during cooling down.

The horizontal crack pattern on top emerged after eight minutes, with water emerging from these
cracks after roughly ten minutes. A crack on the side wall of the specimen, about 10 cm below the top,
was observed only after nineteen minutes; this crack eventually reached a size of 0.7 mm (after thirty
minutes). Deformation measurements showed that the connection between the roof and the middle
wall (point A) has moved upwards 3.1 mm at that point, and the connection between the roof and the
side wall (point C) 3.7 mm, both due to elongation of the walls, but on one side restrained by the
unheated tube. Halfway the span (point B) the upward movement is 1.5 mm, which means a net sag of
1.9 mm.
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A schematic showing the location of displacement measurers A, B and C.

This test was then repeated for a concrete with fibres of 18 m in diameter and 12 mm in length (the�
most often used type of fibre). Although it was expected that would not influence the cracking on the
unheated side, cracks were actually found to be smaller than in the previous test. The crack on top
adjacent to the middle wall reached a size of only 0.4 mm after thirty minutes of heating. The crack
was first observed after six minutes, suggesting that the time until cracking was not or hardly
influenced. A smaller crack adjacent to the side wall appeared after 17 minutes.

The specimen with fibres 18 m in diameter and 12 mm in length after 30 minutes of heating. Note the�
relative scarcity of water compared to the test without fibres.

A major difference when compared to the first test was that initially hardly any water emerged from
the cracks, probably because the voids and channels left by the fibres upon melting created a room
where the water could temporarily be stored. Moisture first appeared after 11 minutes on equidistant
cracks perpendicular to the middle and side walls, but the amount was far less than in the first test.
Upon further heating, the water reached boiling temperature as it did in the first test, but even in this
stage the amount of moisture was limited compared to the first test.
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The elongation of the walls was found to be smaller than in the previous test, with a displacement of
2.1 mm upwards being found for both points A and C. Point B underwent an upwards displacement of
0.5 mm, which corresponds to a relative sag of 1.6 mm, roughly the same value as in the previous
test. This is remarkable because the cracks are smaller, whereas one would expect a linear relationship
between sag and crack width. 

A third test was carried out with a concrete with fibres 18 m in diameter and 6 mm in length,�
protected by a 15 mm Prometect-H plate. Unfortunately, this test showed an 'incorrect' mechanism of
the roof bending upwards rather than downwards, with point B showing the highest upwards
displacement of 2.3 mm, compared to 1.4 mm in point A and 2.0 mm in point C (after thirty minutes
of heating). Apparently this mechanism was made possible by the small thermal gradient (because of
the fire-resistant plate) in combination with the small thickness.

This is, of course, the same mechanism that was predicted in the initial attempts with the finite
element model (see section 4.2), but was discarded because it did not correspond to the preliminary
test results (nor to any subsequent test without fire-resistant plates), but apparently it is the occurring
scenario in this specific test. This is problematic because very little can be learned from this
mechanism: there are hardly any cracks (only equidistant bending cracks, but they are very small),
and the situation does in no way correspond to an actual tunnel (even with a very thick fire-resistant
plate, the large thickness of the walls will always cause inwards bending).

The solution to this, by analogy to the simulation, would be to put an actual loading on the specimen,
so that downward bending is forced. Therefore, a number of street tiles was placed on the specimen
during the next fire test (a different specimen with fibres 32 m in diameter and 12 mm in length), but�
this did cause a change in mechanism. Because the FEM simulation already predicted upwards
bending for the unprotected specimens (which was not the case in the experiments), the model cannot
be used to accurately predict the necessary load, although the of 0,1 N/mm2 might at best be an
overestimation.

That said, a value in that range might be low when compared to concrete strength, but it is quite high
when it has to be achieved using dead weight alone, especially when the dead weight has to be
concentrated rather than spread out, in order to keep the crucial parts of the specimen uncovered, so
that cracks could still be observed here. After numerous considerations, an elaborate construction
consisting of eight stacked leftover concrete blocks was decided upon, totalling 7560 kg and being
two meters in height.

The blocks were laid perpendicularly to the tunnel side and
middle walls, which meant that they would lose contact with
the span of the roof as soon as it would start to sag, being
supported only by the walls. Because the elongation of the
roof would cause any bending to continue (whether it be an
upwards of downwards bending), this should be enough to
ensure the proper mechanism taking place. The measured
deformations are then the 'true' deformations related to the
temperature, and no longer influenced by the loading. To
avoid wasting another specimen, the specimen from the
second test was recycled. It was rotated 180 degrees so that
the (damaged) roof became the bottom, and the previously
unheated tube could be heated.
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The construction of blocks used to put load on the specimen. The specimen itself is somewhere below
all this.

Unsurprisingly, this specimen showed smaller deformations, with points A and C moving 0.9 mm
upwards, and point B moving 0.5 mm, a relative sag of 0.4 mm after thirty minutes of heating. After
100 minutes, the upwards movement of all points has increased to 2.0 mm in A, 1.9 mm in C and 1.5
mm in B, a relative sag of 0.45 mm, hardly an increase.

It was difficult to observe cracks during this test, partly because the blocks blocked over half of the
surface area of the roof, and partly because the instability of the towering construction meant that the
specimen could not be approached. This formed an impractical combination with the fact that this
(recycled) specimen contained fibres, which meant that cracks would be largely dry. Only after 30
minutes were moist cracks seen on the side wall, and only after 35 minutes a dry crack appeared on
top adjacent to the middle wall. After 57 minutes, moisture appeared from under the blocks, but it was
not until 76 minutes after the start of the test that moisture emerged from the crack adjacent to the
middle wall. 
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Only the small surface area between the blocks remained free for assessing crack widths.

By that time, several other cracks had formed on top. After 61 minutes a crack perpendicular to the
side and middle walls appeared, running the length of the span. The concentration into one central
crack in this direction is most likely related to the loading blocks being placed on either side of it,
whereas in previous (unloaded) tests there were 'spread out' equidistant cracks in this direction. After
64 minutes a longitudinal crack formed adjacent to the side wall. All cracks were very small
throughout the test, probably never widening beyond 0.2 mm (although no cracks were measured,
because the specimen could not be approached).

The observed phenomena correspond well to the expectations from the FEM simulation and the
general functionality of fire-resistant plates, the only exception being the perpendicular crack which is
now concentrated due to the load placement, but this direction is not considered (in reality, it would
make a difference whether the fire would break out in the middle of a tunnel section, or exactly
beneath a connection between two sections, the latter probably allowing a rotation without bending of
either of the sections).

Although the test was, in this respect, successful, it was not repeated because building and removing
the loads was thought to be too time consuming to fit in the original time schedule, and the cracks
were very difficult to observe (an important objection if visual inspection is to be the prime means of
gathering information during a test). It is as yet unknown whether further tests will be undertaken in a
second test series, and if so, how they would be organised, but either way it would not be possible to
incorporate them into this master's thesis. This is unfortunate because at least a test on a concrete with
fire-resistant plates but without fibres should be carried out for a proper comparison.
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4.4 Interpretation

Because of the large difference between an actual size tunnel and a scaled specimen, particularly for
an effect that is caused by the thickness of the roof, the results of the fire tests should not directly be
translated to real tunnels, but can only be used for validation of the finite element simulation. In this
respect, the results of the fire tests should be seen as very positive, as they show a good correlation
with the predicted results. For the unprotected specimen, a comparison is shown below.

Time Crack width
Roof, adjacent to middle wall Roof, adj. to side wall Side wall, below roof

<1.5 minutes 0.9 mm 0.7 mm 0.9 mm Predicted
~5 minutes 0.9 mm 0.5 mm 0.7 mm Observed

As can be seen, the predictions for the crack widths are in general very close to the observed values.
Only the time until cracking is an important underestimation, but this may be caused by the fact that it
is very difficult to observe a (dry) crack until it has reached a certain size (theoretically, the crack
starts as a microcrack, which cannot be observed yet). This means that it is quite possible that the
predicted time until cracking is actually very close to the actual value, but the observed value is an
overestimation.

It is also of interest to compare the deformations in the points A, B and C (see schematic in section
4.3). As can be seen from the table, the general upward movement of the specimen is greatly
underestimated, but the prediction for the net sag (which most closely relates to the crack width) is
reasonably accurate. The underestimation of the upwards movement might be related to the incorrect
modelling of the biaxiality of LITS, as explained in section 2.4.2.2, as well as to the added 0,1 N/mm2

load that was used to correct the initial incorrect prediction. The boundary conditions may also have
an influence here.

Point A Point B Point C Net sag
+0.8 mm -1.5 mm +1.0 mm 2.4 mm Predicted
+3.1 mm +1.5 mm +3.7 mm 1.9 mm Observed

Contrary to the expectations, the fire test has shown that PP fibres have a significant influence on the
crack width, reducing it from 0.9 mm to 0.4 mm (for the crack in the roof adjacent to the middle
wall). The reason for this unclear; it might be related to the smaller pore pressures, but then the model
(which ignores moisture transport and pore pressure) should match with the specimen with PP fibres
rather than with the unprotected specimen, which it clearly does not. In addition, the sag of the roof
seems hardly influenced by the addition of PP fibres, suggesting that only the crack size is influenced,
and not the deformations.

Most likely, the difference in crack size is caused by a different moisture content, which cannot be
explained by the model because the moisture content is not a parameter there (although implicit
assumptions have been made, as explained in section 2.4). Apparently the assumed moisture content
matches the actual moisture content in the unprotected specimen (although this value was not
measured), but deviates from the moisture content of the specimen protected with PP fibres. If this
influence is to be analysed, a different kind of model would be required.
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It is noteworthy that there is significantly less water emerging from the specimen with PP fibres. In
the unprotected specimen, water inside the concrete will expand upon heating and evaporate, and
subsequently move away from the heated region because there is not enough room in the concrete.
The vapour will condensate again at some distance from the heated region, because by that point
temperatures will have dropped sufficiently. This moisture transport will eventually involve
emergence of water on the unheated surface. In the specimens with PP fibres, there are voids and
channels created upon melting of the fibres, where the water vapour can move instead.

For the specimen with fire-resistant plates, it is very difficult to compare values between the fire test
and the FEM model, because the specimen could not be approached. The crack in the roof adjacent to
the middle wall was only observed after 35 minutes, whereas it should have emerged after only 3
minutes according to the model, but it is very likely that the crack had been present for a long time
before it was observed. Further problems arise from the blocks themselves blocking part of the roof
surface (if the crack did not start in the middle, it would not have been observed), and from the fact
that the specimen also contained PP fibres, which clearly has an influence as well. That said, the
predicted value of 0.2 mm crack width after 30 minutes of heating seems to match the (eventually)
observed crack width for the crack in the roof adjacent to the middle wall.

Compared to the crack properties, the deformations can be compared with relative ease. Again, the
general upward movement of the specimen is underestimated, but the prediction of the net sag
appears to be very accurate. As the latter value is the most influential on the crack, this should be seen
as a good approximation. During testing, it was observed that the unheated tube also moved upwards,
becoming loose from the floor. This is not possible in the FEM model because of the boundary
conditions, creating an additional restraint that most likely causes the difference in predicted upward
movement.

Point A Point B Point C Net sag
+0.1 mm -0.3 mm +0.2 mm 0.5 mm Predicted
+0.9 mm +0.5 mm +0.9 mm 0.4 mm Observed

In conclusion, it would seem that the model has a good predictive value for behaviour of the
specimen, although the deviation caused by the addition of PP fibres cannot be explained (nor can this
be expected of the model, as no function of these fibres is implemented). From a statistical standpoint,
it would be desirable to perform more test to assess the reproducibility of these values, but based on
the information presently available, the model seems adequately accurate. It would therefore be
reasonable to assume that the model is also adequately accurate for an actual size tunnel, although this
is an extrapolation.
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5. Sensitivity analysis

Because the result of any computer simulation is of course highly dependent on its input values, it is
necessary to analyse the sensitivity of the the result to a variation in a specific parameter. However, it
would be impractical to test the influence of all parameters, because a number of parameters are input
as curves or tables, which cannot be expressed as a single parameter. This sensitivity analysis will
therefore be limited to a number of well-defined parameters, which are expected to be of great
influence. All results pertain to the model described in chapter 2 (the mesh representing an actual size
tunnel).

For the purpose of this sensitivity analysis, a single output parameter has been chosen to be compared,
rather than showing and analysing plots of different parameters in space and time for each variation of
the input parameters. While it might at first seem that the (largest) resulting crack width would be the
obvious choice for such a parameter, this is not the case, as this value can often not be easily
determined from the DIANA output. For some (smaller) values of input parameters, the output clearly
shows two parallel cracks in the roof adjacent to the middle wall, whereas others show only one
crack. 

A large number of simulations, however, show only a large region over which the fictitious crack
widths are spread out (see for example the figure on page 61, although that pertains to a different
mesh), making it unclear whether the summated crack width should be divided over two separate
cracks, or be understood to relate to only a single crack. Although the crack spacing can be estimated
from the reinforcement ratio and diameter, this is difficult to apply because the crack widths are not
evenly distributed over a fixed width (rather, there is often a bell curve), which makes results obtained
this way particularly inexact.

In addition to this, the resulting crack width is influenced by more parameters, including the
problematic value of wc, for which larger values than what would be realistic have to be used to
ensure stability. This means that the resulting crack width cannot be unequivocally assessed, and
therefore it is not a suitable parameter for comparison in a sensitivity analysis. Of course, the actual
crack width was intended to be determined using the lattice analysis, but, as explained in chapter 3,
this turned out not to be possible.

A plot of the fictitious crack width w clearly showing two parallel cracks in the roof adjacent to the
middle wall. This plot has been obtained for a compressive strength reduced to 15 N/mm2.
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It should also be pointed out that while the Rijkswaterstaat curve has an arbitrary length of two hours
(although sometimes a three-hour version is used as well, created simply by keeping the temperature
constant for another hour), a natural fire in an actual tunnel might continue for a longer time.
Therefore, the crack width after two hours is not necessarily the maximum crack width occurring
during a fire (and, in addition to that, the resulting crack width is also modified by the behaviour
during unloading, which is currently not implemented in the model).

Instead, the time until the first crack appears in the specimen has been chosen (in particular, the crack
in the roof adjacent to the middle wall, which was always the first crack in all simulations). This value
can easily and unequivocally be determined from the analyses, and is an indirect measure of the
resulting crack width (if it takes longer before the first crack appears, the resulting crack width at a
fixed point in time will always be smaller). It is not influenced by uncertain parameters such as wc,
making its values more usable for comparison. Specific variations in the resulting crack width will
still be mentioned for the particular comparisons, but they are not plotted in the graphs. 

Values obtained from the analyses performed for this sensitivity study are marked with diamond
symbols in the graphs. The straight lines connecting them are only added to aid the user in reading the
graphs, and are not intended to establish a definitive relationship.

As was to be expected, the thickness of the fire-resistant plates has a large influence on the time until
cracking occurs, easily delaying the crack onset until 70 to 80 minutes after the fire has started (27
mm being the most commonly used thickness). It will be clear that this also means that the resulting
crack width after, for example, 120 minutes will be far lower for higher plate thicknesses, although
the rate with which the crack widens seems to be slightly higher for thicker plates. For other analyses
in this sensitivity study, an absence of fire-resistant plates has been assumed.
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As can be seen in the above graph, the reference compressive strength of the concrete has a minor
influence, with larger strengths leading to slightly earlier cracking. The inverse proportionality is
probably caused by the fact that a smaller compressive strength causes an earlier onset of the
softening phase, which can compensate for the thermal expansions. The subsequent rate of crack
widening seems hardly influenced. 

It should also be noted that, if tensile strength and compressive strength are treated as separate
variables (in reality they are typically linked), an increase in compressive strength means a decrease
in the strain at peak stress in tension (because the Young's modulus decreases but the maximum
compressive strength remains constant). This means that larger tensile strains can be accommodated
before a crack emerges, which is also a possible explanation of the observed inverse proportionality.
Note that this graph only pertains to the compressive strength at 20 ºC; the relative decrease of this
parameter with temperature is kept constant (as described in section 2.4.2.3). For the other analyses in
this sensitivity study, a compressive strength of 35 N/mm2 was assumed.

In contrast to the compressive strength, the reference tensile strength clearly has a large influence on
the time until cracking (in reality these parameters are typically linked, but for the purpose of this
sensitivity analysis, they are considered separately). It is, of course, easy to see why: a crack will only
develop once the tensile strength has been exceeded, so the higher the tensile strength, the longer it
will take before the crack emerges. For a tensile strength of 5 N/mm2, no crack will develop within
the first two hours of heating. The rate with which a subsequent crack widens seems hardly
influenced. For the other analyses in this sensitivity study, a tensile strength of 2 N/mm2 has been
assumed. 
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The cross sectional area of the inner reinforcement (i.e. the reinforcement close to tubes) seems to
have a minor influence on the time until cracking, with larger values leading to slightly earlier
cracking. Because this reinforcement is in compression during heating (as explained in section 2.5), it
does not limit the deformation of the expanding concrete. In fact, because the thermal expansion of
steel is slightly higher than the thermal expansion of concrete (for most temperatures), the presence of
the reinforcing steel would seem to increase the deformation of the tunnel roof and walls. This is
probably the cause of the observed inverse proportionality. The rate with which the crack widens
appears to be uninfluenced by this parameter. For the other analyses in this sensitivity study, an inner
reinforcement area of 3272 mm2 has been assumed (corresponding to ø25-150 mm).
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The cross sectional area of the outer reinforcement (i.e. the reinforcement close to the tunnel surface)
also seems to have a minor influence on the time until cracking, but with the time until cracking
increasing for increasing areas. However, the outer reinforcement area clearly has a very large
influence on the subsequent rate with which the crack widens, and therefore on the resulting crack
width. This is, of course, a well-known and extensively described effect of reinforcement that hardly
needs elaboration here (and, because the reinforcement is located near the tunnel surface, it is
uninfluenced by temperature effects).

In can therefore be concluded that there are three properties that have a large influence on the
resulting crack width: the thickness of the fire-resistant plates (if present), the tensile strength of the
concrete (both merely delaying the crack initiation), and the cross sectional area of the outer
reinforcement (limiting the rate with which the crack widens once it has opened). For actual purposes,
of course, the tensile strength seems a less feasible parameter to select for improvement, leaving the
outer reinforcement area and the plate thickness.
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6. Conclusions and recommendations

6.1 Conclusions

If a fire breaks out in an immersed tunnel, its walls and roof will warm up as well. Since the thermal
conductivity of concrete is very low (and tunnel walls are relatively thick), the heated side of a tunnel
wall can easily reach temperatures well in excess of 700 ºC, while the unheated side can still be 20 or
30 ºC. This thermal gradient over the thickness causes a very large difference in thermal expansion,
which can only be accommodated by the inwards bending of the walls and roof, which would lead to
cracks on the unheated side. In this master's thesis, a finite element simulation has been made to
assess this risk.

Calculations using this finite element simulation show that cracking on the unheated side is a realistic
phenomenon that may manifest itself during a fire in an immersed tunnel. Although certain
simplifications have been made while modelling, a comparison with fire tests carried out at Efectis
shows that the model has a good predictive value for the behaviour of these specimens. Although only
a limited number of tests were performed, it seems reasonable to assume that the model also has a
good predictive value for an actual size tunnel.

This means that serious crack widths on the unheated side will be reached during a fire, up to 1.8 mm
after 40 minutes for an unprotected tunnel. As natural fires will typically have a longer duration, the
resulting crack widths will evidently be even larger. In addition to a large crack in the roof adjacent to
the middle wall, there will also be smaller cracks in the roof adjacent to the side wall (of the heated
tube), and in the side wall just below the roof.

There are, in general, two ways of avoiding these cracks. Firstly, the crack initiation can be delayed
by applying fire-resistant plates (which reduces the temperatures to which the concrete is exposed), or
by increasing the tensile strength (although that is a less feasible option for actual tunnels). Secondly,
one can accept that cracks will develop, but keep their size within acceptable limits, which can be
achieved using reinforcement: similar to any other concrete construction, the size of cracks can be
limited by increasing the reinforcement area on the side of the cracks. As this pertains to the unheated
side, there are no temperature effects here.

However, the realisation that cracking may occur on the unheated side if this is not actively prevented
is only a partial conclusion, as long as the question how damaging such a crack might be is not yet
addressed. The structural integrity of the tunnel is not directly threatened by the occurrence of the
cracks; even with crack widths as large as 1.8 mm the sag will be limited to 10 mm in the middle of
the span, which is well within acceptable limits. 

The durability of the heated region of the tunnel will be reduced during the crack, as the strength and
stiffness of both the concrete and the reinforcing steel will decrease due to the high temperatures, and
will not return upon cooling. However, this is a general risk associated with fire that has already been
extensively described in other studies, and not a consequence of the cracks on the unheated side that
are the focus of this master's thesis.
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However, one particular structural aspect that is noticeably influenced by these cracks is the shear
capacity at the location of the cracks. As cracks cannot transmit shear stresses, the shear capacity is
reduced at the locations of the cracks, which coincide with the locations of the largest shear stresses.
If shear reinforcement is applied this is not likely to become a problem, but it is important to keep the
possibility of cracking on the unheated side in mind when designing shear reinforcement and
chamfers in an immersed tunnel.

Beside this, it would seem that the main danger stemming from these cracks is a long-term one: the
risk of corrosion of the reinforcement. How imminent this risk is, however, would be difficult to
predict, as long as the cooling down phase is not analysed. The standard material models in DIANA do
not facilitate the modelling of the cooling down phase, but with a user-supplied material model, this
problem has been circumvented. The material model described in this master's thesis has therefore
cleared the way to a proper modelling of the cooling down phase.

6.2 Recommendations

If the cooling down phase is added to the current material model, it would be possible to make an
accurate prediction of the remaining crack width after a complete temperature cycle. As this is
required to assess the risk of corrosion of the reinforcement, this seems the most logical next step.
Since the user-supplied material model has been coded in such a way that it allow for this expansion,
this can now be done with relative ease.

That is not to say that all prerequisite knowledge on concrete behaviour is present, because numerous
assumptions and simplifications still have to be made in the absence of research on this topic. In
particular, more research on the influence of a decreasing temperature on the stress-strain relation is
needed, especially with respect to unloading, softening and biaxiality. In addition, data is needed on
the behaviour of concrete heated to temperatures above 800 ºC, as well as to concrete cooling down
after reaching such temperatures.

In addition to this, there is the problem that it is difficult to assess crack widths with a smeared
cracking model, as the crack widths are spread out over a large area, due to which it is often unclear
whether the the summated crack width should be understood to pertain to a single crack or to multiple
parallel cracks. This was supposed to be analysed in a separate lattice model, but then the problem
remains that some assumptions regarding crack behaviour will already have to made in DIANA, and
whichever assumption is made here will determine the eventual outcome.

Integrating the lattice model in DIANA would have avoided this, but this turned out not to be possible
within the continuity requirements that have to be observed between the time steps in DIANA. Using
discrete crack elements to assess crack widths might be the best option in subsequent analyses,
despite their obvious drawbacks: the crack shape and location have to be predefined, and using
multiple parallel crack elements might lead to convergence problems.

It would also be worthwhile to investigate the shear stress at the crack locations in more detail. The
decrease of shear capacity in a crack would have to be modelled to accurately predict the increase of
shear stress in the remaining cross section. The influence of shear reinforcement and chamfer
dimensions can then be analysed, while implementing the temperature influence on the shear
reinforcement.
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Another aspect that could be implemented into the model, if the cooling down phase is to be
modelled, is the influence of the surrounding soil on the crack. When crack widths of nearly 2 mm are
reached, it is possible that water and sand would fall into the crack, creating a resistance against
closing. The magnitude of such a resistance might be difficult to predict, but could have an important
bearing on the result. In addition, it might be worthwhile to assess the reduced water tightness of the
tunnel roof due to cracks, but a different type of model would be required for that.

The material model itself can also always be expanded and refined. In particular, the current
assumption of a Rankine yield contour with two independent axes is rather crude; a Drucker-Prager
criterion would be more realistic at this point, preferably with a correct modelling of the Poisson's
ratio, and the temperature influence thereupon, implemented. A proper modelling of the biaxiality of
the load induced thermal strains (LITS) as investigated by Ehm (1985) would also improve the
prediction of the deformations.

At the same time, it should be remembered that the convergence of the simulation is an important
boundary condition, and the current model appears to have a good predictive value for the fire tests
already. Therefore, from a theoretical viewpoint, it might be more sensible to first perform additional
tests, to assess the validity of the current model on a larger variety of specimens, for example with
thicker walls. It is important that the moisture content is kept identical between the different test
specimens, and measured before the test.

A further test series should not be combined with tests on specimens with PP fibres, because the
influence of these fibres cannot be modelled using the current material model. If one wants to
investigate their workings further, a different kind of model would be required, that would explicitly
take into account moisture content and flow. This is perhaps more easily done in a multi-scale
approach than by integration in the current model design.
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Summary

If a fire breaks out in an immersed tunnel, its walls and roof will warm up as well. Like most
materials, concrete expands upon heating (until it reaches temperatures over 700 ºC). However, since
the thermal conductivity of concrete is very low (and tunnel walls are relatively thick), the heated side
of a tunnel wall can easily reach temperatures well in excess of 700 ºC, while the unheated side can
still be 20 or 30 ºC.

This thermal gradient over the thickness causes a very large difference in thermal expansion, which
can only be accommodated by the bending of the walls and roof (inwards, so that the heated side can
elongate more than the unheated side). This, however, presents a problem for the corners of the
structure, which cannot possibly accommodate the inward bending of both walls and roof. The
consequence of this is that cracks will develop here, from the unheated side, in case of a fire.

This is potentially very dangerous, because such a crack can be neither seen nor repaired when
assessing damage from the inside of the tunnel. It is possible that tunnels are declared to be 'repaired'
after a fire, while in fact a crack remains open on the unheated side, causing slow corrosion of the
reinforcement. In order to check whether this is actually the case, and if so, to what extent, a computer
simulation has been created in the finite element program DIANA.

However, because the standard material models in DIANA do not facilitate the modelling of hysteresial
effects with respect to temperature, a user-supplied material model has been created, which computes
the stress vector based on a strain vector. However, this also means that several simplifications had to
be made, especially with respect to the biaxial aspects of concrete behaviour. A simple Rankine yield
criterion was used instead, the influence of the Poisson's ratio was ignored, and the load induced
thermal strain (LITS) was applied as if it were a uniaxial effect.

The results of the simulation show that cracking on the unheated side is a realistic phenomenon, that
may manifest itself during a fire. This can be avoided by applying fire-resistant plates or improving
the tensile strength, both of which delay the crack initiation, or by increasing the reinforcement cross
sectional area on the unheated side. In the latter case one accepts that cracks will develop, but
prevents them from widening beyond an acceptable level.

Fire tests on scaled tunnel specimens (1:10) were run at Efectis for comparison. To this extent, an
adapted mesh was created to match the size and shape of the tunnel specimen. The results of the
simulations with this mesh are in good correspondence to the results of the fire tests. Although only a
limited number of simulations were performed, this suggests a good accuracy of the model.

The realisation that cracking may occur on the unheated side is only a partial conclusion, however, as
long as the question how damaging such a crack might be is not yet addressed. The reduction of the
shear capacity might pose a problem, and it would be advisable to take this into account when
designing shear reinforcement and chamfers. Other than this, the structural integrity of the tunnel is
not directly threatened by the appearance of the crack, so that the main danger is the long-term risk of
corrosion of the reinforcement.

Although the material model has opened the way to a proper modelling of the cooling down phase in
DIANA, the actual implementation of this phase is beyond the scope of this master's thesis, which
means that the crack width after cooling down cannot be determined at present. A further expansion of
the FEM simulation to include the cooling down phase is therefore the logical next step, so that an
estimation can be made regarding the magnitude of this risk.
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Appendix: USRMAT code

Below is the actual USRMAT code used in the simulations. Some programmer's comments (preceded by
C..) are included to facilitate later expansion of the model, but for an full explanation, please refer to
chapter 2 of this thesis.

      SUBROUTINE USRMAT( EPS0, DEPS, NS, TIME0, DTIME, TEMP0,
     $                   DTEMP, ELEMEN, INTPT, COORD, SE, ITER,
     $                   USRMOD, USRVAL, NUV, USRSTA, NUS,
     $                   USRIND, NUI, SIG, STIFF )

c..   in    DBL eps0(ns)    Strain vector at start of step
c..   in    DBL deps(ns)    Total strain increment
c..   in    INT ns          Number of stress components
c..   in    DBL age0        Age of element
c..   in    DBL dtime       Total time increment
c..   in    DBL temp0       Temperature
c..   in    DBL dtemp       Total temperature increment
c..   in    INT elemen      Current element number
c..   in    INT intpt       Current integration point number
c..   in    DBL coord(3)    Coordinates of integration point
c..   in    DBL se(ns,ns)   Elasticity matrix
c..   in    INT iter        Current iteration number
c..   in    CHA usrmod*6    User model name
c..   in    DBL usrval(nuv) User parameters
c..   in    INT nuv         Number of user parameters
c..   in/outDBL usrsta(nus) User state parameters
c..   in    INT nus         Number of user state parameters
c..   in/outINT usrind(nui) User indicators
c..   in    INT nui         Number of user indicators
c..   in/outDBL sig(ns)     Total stress
c..   in/outDBL stiff(ns,ns)Tangent stiffness

      PARAMETER        ( MTEMP = 20 )
      CHARACTER*6      USRMOD
      INTEGER          NS, NUV, NUS, NUI, ELEMEN, INTPT, ITER
      DOUBLE PRECISION EPS0(NS), DEPS(NS), TIME0, DTIME, TEMP0, 
     $                 DTEMP, COORD(3), SE(NS,NS), USRVAL(NUV),
     $                 USRSTA(NUS), SIG(NS), STIFF(NS,NS)

      INTEGER          NTEMP, ELMIDX(2), I, XLOS, XELEM, MATNO,
     $                 NWSCHR, X, XRIJ
      LOGICAL          ISGESC
      DOUBLE PRECISION WC, C1, C2, PARFCT, TEMP(MTEMP), KT(MTEMP),
     $                 YOUNG, FCT20, EPS(NS), KTT, DUM, TE, FMAXT,
     $                 FPROPT, PARLEN, PARVAR, PHLEN, DHOR,
     $                 FHORT, EPROPT, EMAXT, EHORT, EULTT, W, ELLEN,
     $                 TEST(4), EPAR, KAPPA, S(2), E(2),
     $                 RDS, ES1, ES2, EE1, EE2, COSR, SINR, ETMP(3,7)
      DOUBLE PRECISION STMP(3,2), SIGTMP(2), EMAXC, FMAXC, EULTC,
     $                 EULTCA, FULTCA, LODLVL, FCC20, KC(MTEMP), KCT,
     $                 GFC, ESOFC, FSOFC, SOFYNG, VORSIG(2), EPST0(3),
     $                 DEPST(3), EPST1(3), EPSLIN, ALFAT, EPSLTS(3),
     $                 ALFA(MTEMP)
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       DOUBLE PRECISION FSM20, FSP20, YNGS20, KFSM(MTEMP), KFSP(MTEMP),
     $                 KYNG(MTEMP), ALFS(MTEMP), KFSMT, KFSPT, KYNGT,
     $                 ALFAST, FMAXS, FPROPS, YOUNGS, EMAXS, EPROPS,
     $                 FUNCA, FUNCB, FUNCC, DEPSTS, EPST0S, EPST1S,
     $                 EPSABS, KLITS
 
     
      IF (USRMOD .EQ. 'STEEL') THEN
      
C..   ------------------------------------------------------------------
C..   --------------------------- REINFORCING STEEL --------------------
C..   ------------------------------------------------------------------    
     
      XLOS = 4
      XRIJ = 5
      FSM20    = USRVAL(1)
      FSP20    = USRVAL(2)
      YNGS20   = USRVAL(3) 
      EMAXS    = USRVAL(4)

      NTEMP = (NUV - XLOS) / XRIJ
      IF (NTEMP .GT. MTEMP) CALL PRGERR ('MTEMP', 1)
      do 5, I=1, NTEMP
           TEMP(I) = USRVAL( XLOS + (I-1)*XRIJ + 1 )
           KFSM(I) = USRVAL( XLOS + (I-1)*XRIJ + 2 )
           KFSP(I) = USRVAL( XLOS + (I-1)*XRIJ + 3 )
           KYNG(I) = USRVAL( XLOS + (I-1)*XRIJ + 4 )
           ALFS(I) = USRVAL( XLOS + (I-1)*XRIJ + 5 )
 5    continue

      ELMIDX(1) = ELEMEN
      ELMIDX(2) = INTPT
      TE = TEMP0 + DTEMP
      
      IF (NUS .NE. 1) CALL PRGERR('NUS', 61)

C..   Calculate thermal strain
      
      CALL INTER1( TE, TEMP, ALFS, NTEMP, ALFAST, DUM )
      DEPSTS = ALFAST * DTEMP
      EPST0S = USRSTA(1)
      EPST1S = EPST0S + DEPSTS
      USRSTA(1) = EPST1S
      
      IF (NS .NE. 1) CALL PRGERR('USRMAT', 61)
      
      EPS(1) = EPS0(1) + DEPS(1) - EPST1S
      
      CALL INTER1( TE, TEMP, KFSM, NTEMP, KFSMT, DUM )
      CALL INTER1( TE, TEMP, KFSP, NTEMP, KFSPT, DUM )
      CALL INTER1( TE, TEMP, KYNG, NTEMP, KYNGT, DUM )
      
      FMAXS = FSM20 * KFSMT
      FPROPS = FSP20 * KFSPT
      YOUNGS = YNGS20 * KYNGT
      
      EPROPS = FPROPS / YOUNGS
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      FUNCC = (FMAXS - FPROPS)**2 / 
     $        ( (EMAXS - EPROPS)*YOUNGS - 2*(FMAXS - FPROPS) )
      FUNCB = sqrt( FUNCC * (EMAXS - EPROPS)*YOUNGS + FUNCC**2 )
      FUNCA = sqrt( (EMAXS - EPROPS) * (EMAXS - EPROPS + C / YOUNGS ) )
      
      EPSABS = ABS(EPS(1))
      
      IF (EPSABS .LT. EPROPS) THEN
           SIG(1) = EPSABS * YOUNGS
           STIFF(1,1) = YOUNGS
      ELSE IF (EPS(1) .LT. EMAXS) THEN
           SIG(1) = FPROPS - FUNCC + (FUNCB / FUNCA) *
     $              SQRT(FUNCA**2 - (EMAXS - EPSABS)**2)
           STIFF(1,1) = FUNCB * (EMAXS - EPSABS) / 
     $                  ( FUNCA*SQRT(FUNCA**2 - (EPSABS - EMAXS)**2) )
      ELSE
           SIG(1) = FMAXS - 1.E-12 * (EPSABS - EMAXS)
           STIFF(1,1) = -1.E-12
      END IF
 
      IF (EPS(1) .LT. 0.D0) SIG(1) = -SIG(1)
 
C..   -----------------------------------------------------------------
C..   -------------------  CONCRETE  ----------------------------------
C..   -----------------------------------------------------------------
 
 
      ELSE IF (USRMOD .EQ. 'CONC') THEN
 
      XLOS = 8
      XRIJ = 4
      FCT20    = USRVAL(1)
      FCC20    = USRVAL(2)
      C1       = USRVAL(3) 
      C2       = USRVAL(4) 
      WC       = USRVAL(5) 
      PARFCT   = USRVAL(6)
      GFC      = USRVAL(7)
      KLITS    = USRVAL(8)

      NTEMP = (NUV - XLOS) / XRIJ
      IF (NTEMP .GT. MTEMP) CALL PRGERR ('MTEMP', 1)
      do 19, I=1, NTEMP
           TEMP(I) = USRVAL( XLOS + (I-1)*XRIJ + 1 )
           KC(I) = USRVAL( XLOS + (I-1)*XRIJ + 2 )
           KT(I) = USRVAL( XLOS + (I-1)*XRIJ + 3 )
           ALFA(I) = USRVAL( XLOS + (I-1)*XRIJ + 4 )
 19    continue

      ELMIDX(1) = ELEMEN
      ELMIDX(2) = INTPT
      TE = TEMP0 + DTEMP
      
      IF (NUS .NE. 4) CALL PRGERR('NUS', 1)
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C..   Determine thermal strain (incl. LITS)
      
      CALL INTER1( TE, TEMP, ALFA, NTEMP, ALFAT, DUM )
      EPSLIN = ALFAT * DTEMP
      DO 3, X=1, 2
           EPST0(X) = USRSTA(X)
           IF (SIG(X) .LT. 0.D0 .AND. DTEMP .GT. 0.D0) THEN
                EPSLTS(X) = KLITS * SIG(X) / FCC20 * ALFAT * DTEMP
           ELSE
                EPSLTS(X) = 0
           END IF
           DEPST(X) = EPSLIN + EPSLTS(X)
3     CONTINUE
      EPST1 = EPST0 + DEPST
      
      DO 4, X=1, 3
           USRSTA(X) = EPST1(X)
4     CONTINUE
      
      XELEM = INQ('/ELEMEN','DIM')
      CALL GTXC('/ELEMEN/HCRAC', ELMIDX(1), ELLEN, 1)  
      
      IF (NS .NE. 3) CALL PRGERR('USRMAT', 1)
      
      EPS = EPS0 + DEPS - EPST1
         
      EE1 = EPS(2) + EPS(1)
      EE2 = EPS(2) - EPS(1)
      RDS = SQRT(EE2**2+EPS(3)**2)
      E(1) = 0.5 * (EE1 + RDS)
      E(2) = 0.5 * (EE1 - RDS)
      IF (RDS .EQ. 0) THEN
           COSR = 1.
           SINR = 0.
      ELSE
           COSR = EE2 / RDS
           SINR = EPS(3) / RDS
      END IF
      
c..   Calculate derivatives
      ETMP(1,1) = 1
      ETMP(1,2) = -1
      ETMP(2,1) = 1
      ETMP(2,2) = 1
      IF (RDS .NE. 0) THEN
           ETMP(1,3) = ( 2*EPS(1) - EPS(2) ) / (2 * RDS)
           ETMP(2,3) = ( 2*EPS(2) - EPS(1) ) / (2 * RDS)
           ETMP(3,3) = EPS(3) / RDS
      END IF
      
DO 10, X=1, 3
           ETMP(X,4) = 0.5 * (ETMP(X,1) + ETMP(X,3))
           ETMP(X,5) = 0.5 * (ETMP(X,1) - ETMP(X,3))
           IF (RDS .NE. 0) THEN
                ETMP(X,6) = (ETMP(X,2)*RDS - ETMP(X,3)*EE2) / (RDS**2)
                ETMP(X,7) = -ETMP(X,3)*EPS(3) / (RDS**2)
                ETMP(3,7) = (RDS - ETMP(X,3)*EPS(3)) / (RDS**2)
           END IF
10    CONTINUE
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      VORSIG(1) = 0.5*(SIG(2) + SIG(1) + RDS)
      VORSIG(2) = 0.5*(SIG(2) + SIG(1) - RDS)
      
      DO 11, X=1, 2
      
C..        Calculate load level from stresses of the previous step
           IF (VORSIG(X) .GE. 0.D0) THEN
                LODLVL = 0
           ELSE
                LODLVL = - VORSIG(X) / FCC20
           END IF
           IF (LODLVL .GT. 0.3) LODLVL = 0.3
     
           EMAXC = - ( 2.2D0 + TE/140.D0 - TE/100.D0 * LODLVL**0.3 )
     $             * 1.D-3 
           CALL INTER1( TE, TEMP, KC, NTEMP, KCT, DUM )
           FMAXC = - FCC20 * KCT
           
           YOUNG = 2 * FMAXC / EMAXC
           
           EULTC = 2 * GFC / (FMAXC * ELLEN) + EMAXC
c..        SOFYNG is calculated from FMAXC instead of FSOFC to avoid the need
c..        for iteration
           SOFYNG = - FMAXC / (EULTC - EMAXC)
           
           ESOFC = EMAXC * (1 - SOFYNG / YOUNG)
           FSOFC = FMAXC * (1 - (SOFYNG / YOUNG)**2)
           
           EULTCA = -FSOFC / SOFYNG + ESOFC
           FULTCA = SOFYNG * (EULTCA - ESOFC) + FSOFC
           
           CALL INTER1( TE, TEMP, KT, NTEMP, KTT, DUM )
           FMAXT = FCT20 * KTT
           FPROPT = (1 - PARFCT) * FMAXT
           EPROPT = FPROPT / YOUNG
      
c..   DHOR is the derivative of the Hordijk curve at w = 0 (calculated from
c..   FMAXT instead of FHORT to avoid iterating). The parabola y=ax^2 (with top
c..   at EMAXT) is characterized by a single parameter a = PARVAR. The length of
c..   the parabola on the left side of the top (hardening) equals PARLEN, the
c..   length of on the right side of the top equals PHLEN. The lengths are
c..   determined from the requirement that the derivatives equal YOUNG and DHOR
c..   respectively, and the height at the start of the parabola equals
c..   PARFCT * FMAXT.
      
           DHOR = (-1 * C2 -1*(1+C1**3) * EXP(-1*C2)) * FMAXT/(WC/ELLEN)
           PARLEN = 2 * PARFCT * FMAXT / YOUNG
           PARVAR = -1 * YOUNG**2 / (4 * PARFCT * FMAXT)
           PHLEN = -2 * PARFCT * FMAXT * DHOR / (YOUNG**2)

           EMAXT = EPROPT + PARLEN
           FHORT = FMAXT - PARFCT * FMAXT * DHOR**2 / (YOUNG**2)
           EHORT = EMAXT + PHLEN
           EULTT = EHORT + WC / ELLEN
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           w = 0
           IF (E(X) .LT. EULTCA) THEN
                S(X) = - 1.E-12 * (E(X) - EULTC)
                SIGTMP(X) = -1.E-12
           ELSE IF (E(X) .LT. ESOFC) THEN
                S(X) = SOFYNG * (E(X) - ESOFC) + FSOFC
                SIGTMP(X) = SOFYNG
           ELSE IF (E(X) .LT. 0.D0) THEN
                S(X) = FMAXC * E(X) / EMAXC * ( 2 - E(X) / EMAXC )
                SIGTMP(X) = 2 * FMAXC / EMAXC * (1 - E(X) / EMAXC)
           ELSE IF (E(X) .LT. EPROPT) THEN
                S(X) = E(X) * YOUNG
                SIGTMP(X) = YOUNG
           ELSE IF (E(X) .LT. EHORT) THEN
                EPAR = E(X) - EMAXT
                S(X) = FMAXT + PARVAR * EPAR**2
                SIGTMP(X) = 2 * PARVAR * EPAR
          ELSE IF (E(X) .LT. EULTT) THEN
                W = (E(X) - EHORT) * ELLEN
                S(X)=( (1+(C1*W/WC)**3)*EXP(-1*C2*W/WC)-
     $                 W/WC*(1+C1**3)*EXP(-1*C2) ) * FHORT
                SIGTMP(X)=(((3-C2*W/WC)*C1**3*(W/WC)**2-C2)
     $               *EXP(-1*C2*W/WC)-(1+C1**3)*EXP(-1*C2)) * FHORT/WC
           ELSE
                S(X) = 1. - 1.E-12 * (E(X) - EULTT)
                SIGTMP(X) = - 1.E-12
           END IF
      
           IF (S(X) .EQ. 0.D0 .AND. E(X) .NE. 0.D0) THEN
                CALL PRGERR('USRMAT', 11)
           END IF
           
           IF (X .EQ. 1) USRSTA(4) = W
 11   CONTINUE
      
      ES1 = 0.5 * (S(1) + S(2))
      ES2 = 0.5 * (S(1) - S(2))
      SIG(1) = ES1 - ES2 * COSR
      SIG(2) = ES1 + ES2 * COSR
      SIG(3) = ES2 * SINR
      
      do 12, X=1, 3
         STMP(X,1) = 0.5 * (SIGTMP(1)*ETMP(X,4) + SIGTMP(2)*ETMP(X,5))
         STMP(X,2) = 0.5 * (SIGTMP(1)*ETMP(X,4) - SIGTMP(2)*ETMP(X,5))
 12   CONTINUE
 
      do 13, X=1, 3
           STIFF(1,X) = STMP(X,1) - STMP(X,2)*COSR - ETMP(X,6)*ES2
           STIFF(2,X) = STMP(X,1) + STMP(X,2)*COSR + ETMP(X,6)*ES2
           STIFF(3,X) = STMP(X,2)*SINR + ETMP(X,7)*ES2
 13   CONTINUE
 
      END IF
      RETURN
      END
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In the DIANA data file (*.dat), the user-supplied material model can then be invoked by adding the
following code. The values shown here are, of course, an example.

     USRMAT   STEEL
     USRVAL   500.E6 300.E6 2.1E11 0.02
:             TEMP      KfMAX   KfPROP  KYNG    ALPHA
             -2000.     1.      1.      1.      1.2216E-5
                20.     1.      1.      1.      1.2216E-5
               100.     1.      1.      1.      1.280E-5
               200.     1.      0.81    0.90    1.36E-5
               300.     1.      0.61    0.80    1.44E-5
               400.     1.      0.42    0.70    1.52E-5
               500.     0.78    0.36    0.60    1.60E-5
               600.     0.47    0.18    0.31    1.68E-5
               700.     0.23    0.07    0.13    1.76E-5
               749.     0.17    0.06    0.11    1.799E-5
               750.     0.17    0.06    0.11    0.
               800.     0.11    0.05    0.09    0.
               860.     0.085   0.045   0.08    0.
               861.     0.085   0.045   0.08    2.E-5
               900.     0.06    0.04    0.07    2.E-5
              1000.     0.04    0.02    0.04    2.E-5
              1100.     0.02    0.01    0.02    2.E-5
              2000.     1.E-12  1.E-12  1.E-12  2.E-5
     USRIND  
     USRSTA  0.

Or, for concrete:

     USRMAT   CONC
     USRVAL   2.E6 35.E6 3. 6.93 160.E-4 0.1 1.e50 2.
:             TEMP    KC      KT      ALPHA
             -2000.   1.      1.      9.E-6
              20.     1.      1.      9.E-6
              100.    1.      1.      9.08E-6
              200.    0.8     0.8     9.31E-6
              300.    0.6     0.6     9.69E-6
              400.    0.4     0.4     1.02E-5
              500.    0.2     0.2     1.09E-5
              600.    0.15    0.15    1.18E-5
              700.    0.1     0.1     1.28E-5
              701.    0.1     0.1     0.
              800.    0.05    0.05    0.
              900.    0.04    0.04    0.
              1000.   0.02    0.02    0.
              1100.   0.01    0.01    0.
              2000.   1.E-12  1.E-12  0.
     USRIND  
     USRSTA  0. 0. 0. 0.
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